

Guidelines to select boundary conditions for mode shapes in flexible multibody systems

GAMM 2010, March, 24th 2010 Dr.-Ing. Andreas Heckmann, DLR Institute of Robotics and Mechatronics

Contents

- ✓ Overview: Pre-processing of flexilbe bodies in multibody dynamics
- - ➤ boundary conditions (BCs)
 - → Ritz Approach
 - ✓ reference frames
- Proposal for the choice of boundary conditions

 - ✓ kinematical loops
- ✓ Application and comparison
- → Summary

Pre-processing of flexible bodies in MBD

- ✓ Modelling of the structure
 - → analytically, PDE, FEM
- Choice of Boundary Conditions
- → Solution of the eigenvalue problem
- ✓ Selection of an reduced set of modes
- → optional: Generation of additional modes
 - e.g. additional particular solutions of the PDE, e.g. static modes, frequency response modes, thermal response modes
- Modal transformation
- Consideration of the non-linear reference motion
 - ✓ floating frame of reference formulation

see e.g. Wallrapp94, Argawal/Shabana95, Dietz99

Boundary Conditions I: Beam

✓ PDE of the Euler-Bernoulli-beam with separation approach

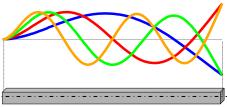
$$\ddot{y}(x,t) + \frac{EI}{\varrho A} y^{\prime\prime\prime\prime}(x,t) = 0$$
 $y(x,t) = w(x) \cdot q(t)$

spatial differential equation

$$w'''' + \lambda^4 w = 0$$
 $w(x) = e^{\nu x}$

 $w(x) = c_1 \cosh(\nu x) + c_2 \sinh(\nu x) + c_3 \cos(\nu x) + c_4 \sin(\nu x)$

> kinematic (essential) BC $w(x_b = 0) = 0$ $w'(x_b = 0) = 0$



dynamic (natural) BC

```
EIw''(x_b) = 0
```

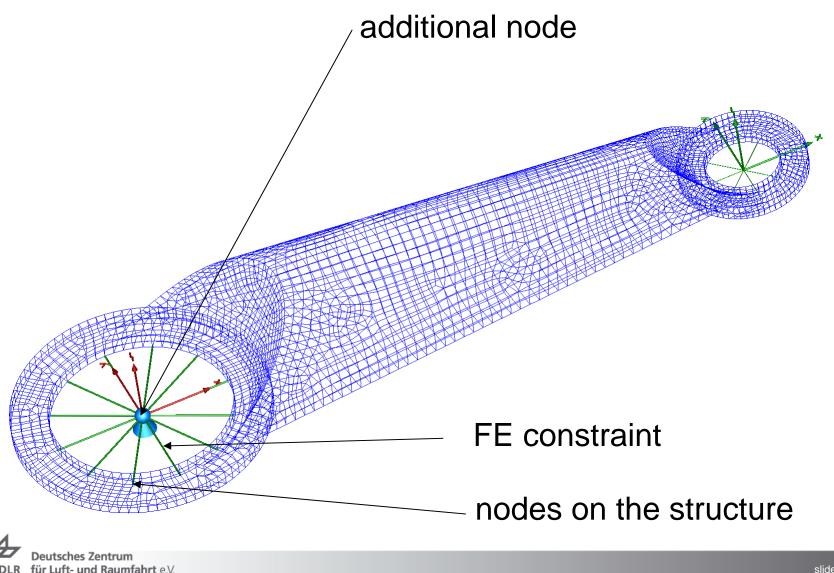
 $EIw'''(x_h) = 0$



slide 4 Heckmann: GAMM2010

Boundary Conditions II: FEM structures

in der Helmholtz-Gemeinschaft



Slide 5 Heckmann: GAMM2010

Ritz-Approach (1908)

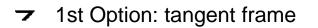
✓ fundamental idea: PDE, e.g.: $\Delta \Delta w = p(x, y)$

$$w_n = \sum_{i=1}^n a_i \psi_i(x) \qquad F = \int_a^b f(x, w_n, w'_n, w''_n, ...) \, dx \longrightarrow \text{stationary}$$
$$u = \sum_{i=1}^n w_i(x)q_i(t) \qquad \delta F = \delta \int_{t_0}^{t_1} (T - U) \, dx = 0$$

- \checkmark provided that the chosen *n* mode functions
 - → are linearly independent
 - \checkmark the number *n* may be increased in order to improve the approximation quality
 - → satisfy the kinematic boundary conditions
- ✓ for comparison: die strong solution satifies
 - ✓ the PDE + the kinematic + dynamic boundary conditions
- in practise: a good approximation of the dynamic boundary conditions improves the convergence of the weak solution (cp. (quasi-)comparison functions) see Meirovitch67

Reference Frames

$$\boldsymbol{r}(\boldsymbol{c},t) = \boldsymbol{r}_R(t) + \boldsymbol{c} + \boldsymbol{u}(\boldsymbol{c},t)$$



$$u(c=0,t)=0$$
 $\frac{\partial u}{\partial c}(c=0,t)=0$

✓ 2nd Option: chord frame

$$u(c_1) = 0$$
 $u(c_2) \cdot \overline{c_1 c_2} = 0$

✓ 3rd Option: Buckens frame ${}^{0}C_{r} = {}^{0}C_{t} = {}^{1}d_{C} = O$

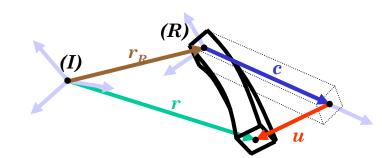
$$egin{pmatrix} mI_3 & {}^{ ext{sym.}} \ m ilde{d}_C & J & \ C_t & C_r & M_e \end{pmatrix} egin{pmatrix} a_R \ ec{q} \ ec{q} \end{pmatrix} = h_\omega - egin{pmatrix} 0 & \ 0 & \ K_e \, q + D_e \, \dot{q} \end{pmatrix} + egin{pmatrix} f_a \ f_lpha \ f_e \end{pmatrix}$$

✓ Linearisation: choose reference frame in such a way that is as small as possible

 $u \ll 1$ \Rightarrow prefer Buckenssystem

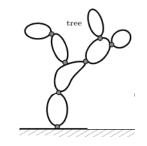
Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

slide 7 Heckmann: GAMM2010



see Schwertassek/Wallrapp/Shabana99

Proposal I: tree-structured Systems



 B_{μ}

 P_i

 B_{k-1}

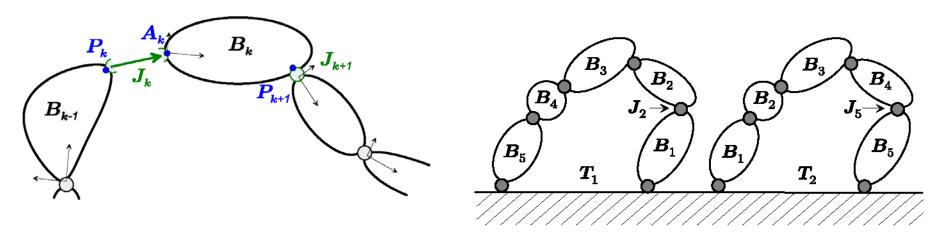
- 1. Kinematics of P_k only depends on generalised coordinates of preceding elements
- 2. A joint does not transmit a constraint force in the direction of its degree of freedom (dof)
- 3. no constraint force \Rightarrow no (i.e. free) boundary condition !

- \checkmark boundary conditions at the joint J_k (in root direction)
 - ✓ choose according to the dof of the joint to which the flexible body is attached
- → boundary condition at the joint J_{k+1} (to the next body of the tree)
 - \checkmark the kinematic description does not rely on the existance of B_{k+1}

 J_{k+1}

Proposal II: closed loops

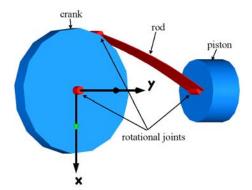
- ✓ here the kinematic formulation of P_{k+1} is not independent from the successing body B_{k+1}
 - ✓ in particular it is not unique(different indices possible)
 - several paths to reach the root of the mutibody system
- choose the boundary conditions at all joints according to their respective degrees of freedom

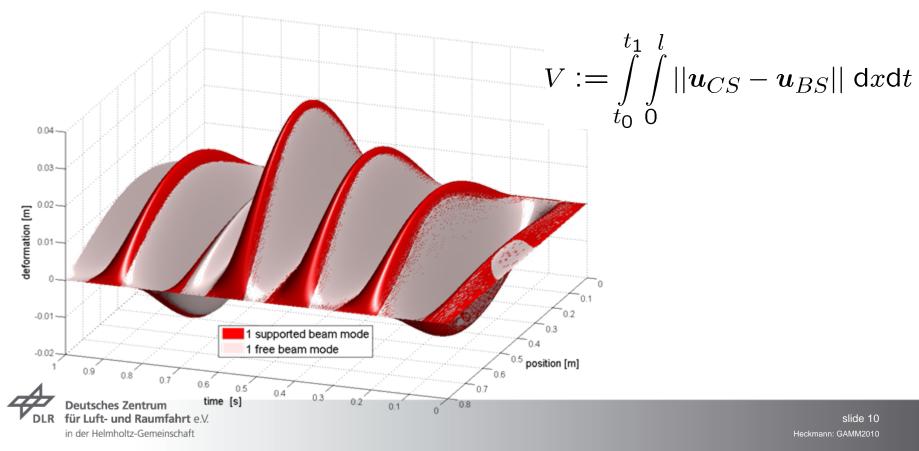


Slider Crank Example I

✓ Comparison

- ✓ beam with supported-supported bcs
- → beam with free-free bcs (Shabana96)





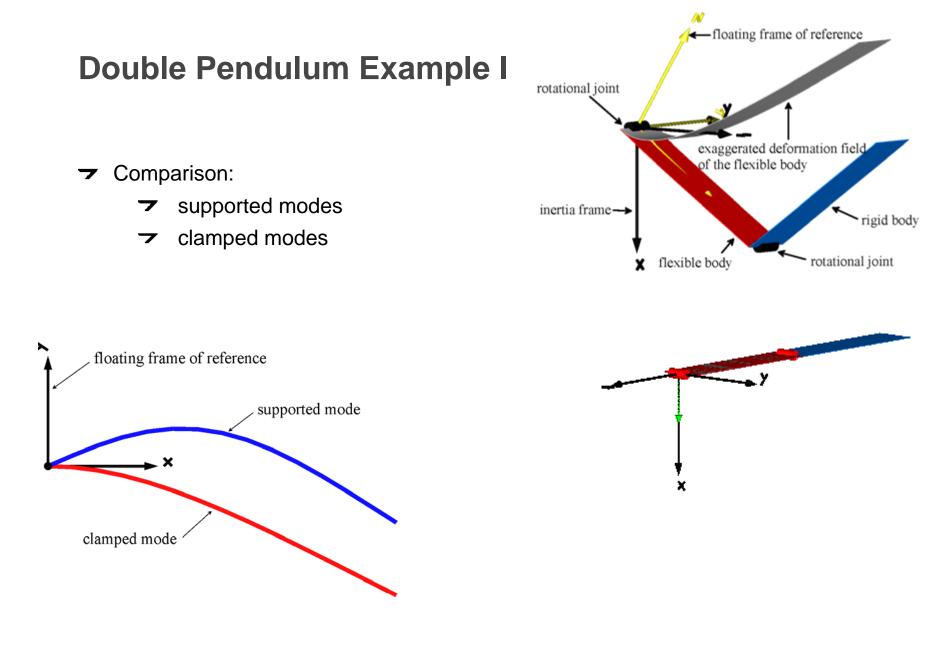
Slider Crank Example II

- Excitation is subcritical here: 1st eigenmode should dominate solution

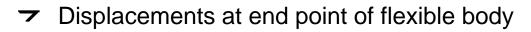
Comparison A	n free modes versus n supported modes							
number of modes n	1	2	3	4	5	6	7	
$V \ [10^{-4} \mathrm{m}^2 \mathrm{~s}]$	10.5	10.6	2.59	2.59	1.26	1.26	0.87	

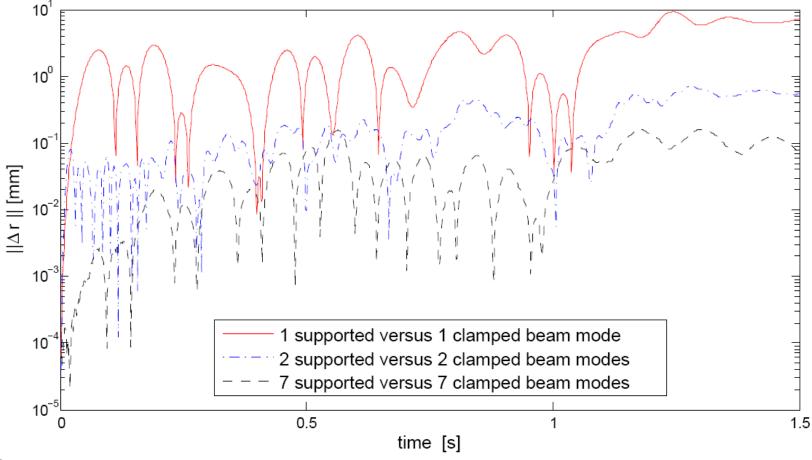
Comparison B	1 free mode versus n supported modes							
number of modes n	1	2	3	4	5	6	7	
$V \ [10^{-4} \mathrm{m}^2 \mathrm{\ s}]$	10.5	10.7	10.7	10.7	10.7	10.7	10.7	

Comparison C	n free modes versus 1 supported mode							
number of modes n	1	2	3	4	5	6	7	
$V \ [10^{-4} \mathrm{m}^2 \mathrm{~s}]$	10.5	10.7	3.00	3.07	2.05	2.06	1.83	



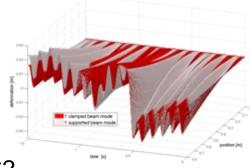
Double Pendulum Example II





DLR Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Double Pendulum Example III



- → Convergence of the solutions: 5% error here V= 2.62

Comparison A	n clamped modes versus n supported modes							
number of modes n	1	2	3	4	5	6	7	
$V \ [10^{-4} m^2 s]$	21.9	1.85	0.56	0.43	0.42	0.42	0.46	

Comparison B	1 clamped mode versus n supported modes							
number of modes n	1	2	3	4	5	6	7	
$V \ [10^{-4} \text{m}^2 \text{ s}]$	21.9	23.8	24.3	24.5	24.6	24.6	24.6	

Comparison C	n c	n clamped modes versus 1 supported mode							
number of modes n	1	2	3	4	5	6	7		
$V \ [10^{-4} m^2 s]$	21.9	3.11	5.24	5.96	6.18	6.28	6.34		

Summary

- - → joint in root-direction: bc according to dof of the joint
 - → other joints free bcs
- - → all joints according to their dof
- see Multibody System Dynamics paper: On the Choice of Boundary Conditions for Mode Shapes in Flexible Multibody Systems

