

ECCOMAS Thematic Conference, Multibody Dynamics 2005 Universidad Politecnica de Madrid

Flexible Bodies with Thermoelastic Properties in Multibody Dynamics

Andreas Heckmann Institute of Robotics and Mechatronics DLR German Aerospace Center Oberpfaffenhofen Martin Arnold Institute of Numerical Mathematics Martin-Luther-University Halle-Wittenberg

Contents

- > Theory
 - Constitutional and Field Equations
 - Modal Multifield Approach
 - Thermal Response Modes
- Machine Tool
 - The Name of the Game
 - Kinematic Scenario
 - Stationary Temperature Fields = Thermal Modes
 - Stationary Displacement Fields = Thermal Response Modes
 - Dynamic Simulation
- Conclusions and Outlook

Material Constitution:

> Weak Field Equations:

$$\int \varrho \delta \boldsymbol{r}^T \ddot{\boldsymbol{r}} \, \mathrm{d}V + \int \delta \varepsilon^T \underbrace{\left(\boldsymbol{H}_c \, \varepsilon - \boldsymbol{H}_\lambda^T \vartheta \right)}_{\boldsymbol{\sigma}} \, \mathrm{d}V = \int \delta \boldsymbol{r}^T \boldsymbol{f} \, \mathrm{d}V$$
$$\int (\nabla \delta \vartheta)^T \boldsymbol{q} \, \mathrm{d}V - \int \delta \vartheta \underbrace{\left(\boldsymbol{H}_\lambda \, \dot{\varepsilon} + \boldsymbol{H}_a \dot{\vartheta} \right)}_{\dot{\eta}} \, \mathrm{d}V = \oint \delta \vartheta \boldsymbol{q}^T \boldsymbol{n} \, \mathrm{d}B$$

Theory: Modal Multifield Approach

$$u(c,t) = \Phi_{u}(c) z_{u}(t) \qquad \qquad \vartheta = \Phi_{\vartheta} z_{\vartheta}$$

$$\varepsilon = (\nabla_{u} \Phi_{u}) z_{u} = B_{u} z_{u}$$

$$K_{uu} = \int B_{u}^{T} H_{c} B_{u} dV \qquad \qquad K_{u\vartheta} = \int B_{u}^{T} H_{\lambda}^{T} \Phi_{\vartheta} dV$$

$$egin{pmatrix} M_{aa} & M_{aa} & M_{au} \ & M_{lpha lpha} & M_{lpha u} \ & \mathbf{M}_{lpha lpha} & \mathbf{M}_{lpha u} \ & \mathbf{M}_{uu} \end{pmatrix} egin{pmatrix} a_R \ & \mathbf{lpha}_R \ & \mathbf{z}_u \end{pmatrix} = egin{pmatrix} h_a \ h_lpha \ & \mathbf{h}_lpha \ & \mathbf{h}_u \end{pmatrix} + egin{pmatrix} \mathbf{0} & \mathbf{0} \ & \mathbf{0} \ & \mathbf{K}_{uu} \ & \mathbf{z}_u - \ & \mathbf{K}_{uarthat} \ & \mathbf{z}_arthat \end{pmatrix} \end{pmatrix}$$

Theory: Thermal Response Modes

Machine Tool: The Name of the Game

- Point-to-Point working task
- Front and back side symmetric
- Drives with excellent dynamical properties for high performance !
- High accuracy demanded !
- Thermal loads caused by drives or working task
 - Relevant displacements ?
 - System-dynamical description ?
 - CAE work flow ?

Machine Tool: Kinematic Scenario

Multibody Dynamics 2005 -7-

Machine Tool: Thermal Modes

2 steady state heat transfer FEM-solutions \Rightarrow 2 thermal modes \Rightarrow 2 thermal response modes

Machine Tool: Dynamic Simulation

TCP: tool center point

P2: reference point, moving along the machine base with predefined kinematics $\Delta r3$, $\Delta z3$: reference displacements of TCP without thermal loads

Conclusions and Outlook

- > Description and CAE workflow of thermal displacements is feasible.
- > In general, modes are not orthogonal.
- > High frequency modes are involved.
- > Machine Tool:

model extension regarding transient temperatures

> Methodology:

neglect of inertia terms related to thermal response modes

Thank you for your attention