

Modelling and Simulation of Rigid and Flexible Multibody Systems in Modelica

Tutorial at the SIMS2007, Göteborg (Särö), October 30th, 2007 Andreas Heckmann, German Aerospace Center (DLR) Institute of Robotics and Mechatronics

Contents

- ➤ Modelica, very briefly
- Modelica Multibody Basics
- → Exercise 1: Control of an inverse pendulum
- ➤ Modelica Multibody Advanced
- → FlexibleBodies Library: Beams
- ✓ FlexibleBodies Library: General bodies based on finite element data

- → General goal:
 - modelling and simulation of **complex physical systems**, consisting of components from different engineering domains
- **7** Focus:
 - **System Dynamics**: global behavior of complex systems
 - differential, algebraic, discrete equations 7 (low-order PDE only if at all, i.e. no FEM or CFD)
- Platform for collaboration between engineering disciplines
 - \checkmark all-in-one approach (contrary to e.g. co-simulation)
 - specialists contribute libraries (open/commercial) for general use
 - supplier provides executable specification of components for OEMs

slide 4

- Object orientation for complex model structuring

- a connection line represents the actual physical coupling A component consists of (wire, fluid flow, heat flow,...)
- A component consist of connected sub-components (hierarchical structure) and/or is described by equations

- Deklarative, acausal modelling
 - equations no assignments
 - → mathematical description no algorithms

- Deklarative, acausal modelling
 - equations no assignments
 - → mathematical description no algorithms

Multibody Systems in Modelica > 30.10.2007

- ➤ Deklarative, acausal modelling
 - ✓ equations no assignments
 - → mathematical description no algorithms
 - ✓ relies on symbolic maniplations
 - ✓ on system level
 - ✓ determine signal path at compile time

$$\dot{x} = f(x, t, \ldots)$$

Modelica and Simulation Environments

Graphical editor for Modelica models

Modelica simulation environment (Dymola, MathModelica, SimulationX, Mosilab,)

Textual description

on file (equations, "schematic", animation) odel circuit
3;
Modelica.Electrical.Analog.Basic.Resistor resistor(R=10) 3;
Modelica.Electrical.Analog.Basic.Inductor inductor(L=0.05) 3;
Modelica.Electrical.Analog.Basic.EMF emf(R=1) 3;
Modelica.Electrical.Analog.Basic.Ground ground 3;
Modelica.Mechanics.Rotational.Inertia Jm(J=1e-3) 3;
Modelica.Mechanics.Rotational.IdealGear n(ratio=100) 3;
Modelica.Mechanics.Rotational.Inertia JL(J=5) 3;
Modelica.Mechanics.Rotational.Sensors.SpeedSensor sensor 3;
Modelica.Mechanics.Botational.Sensors.SpeedSensor sensor 3;

Free Modelica language

Translation of Modelica models in C-Code, Simulation, and interactive scripting (plot, freq. resp., ...)

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Modelica Simulationenvironment (Dymola, MathModelica, SimulationX, Mosilab,...)

Contents

- → Introduction
 - Modelica, very briefly
- ➤ Modelica Multibody Basics
- → Exercise 1: Control of an inverse pendulum
- ➤ Modelica Multibody Advanced
- **7** Exercise 2: Hexapod
- FlexibleBodies Library: Beams
- FlexibleBodies Livbrary: General bodies based on finite element data

Modelica Multibody Basics: Orientation

- ✓ Orientation object R¹²
 - describes orientation of coordinate system 2 wrt.1
 - ➤ holds

```
Real T[3, 3] "Transformation matrix from world frame to local frame";
SI.AngularVelocity w[3]
```

"Absolute angular velocity of local frame, resolved in local frame";

- ✓ may be computed using rotation angles or quaternions
- Multibody Lib. contains over 30 functions to operate on orientation objects

DLR für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Frames

Modelica Multibody Basics: Connectors I

- ➤ Connectors: the interface to connect components
 - ✓ Position is resolved in world frame
 - ✓ Forces and torques are resolved in local frame

connector Frame

"Coordinate system fixed to the component with one cut-force and cut-torque (no icon)" non-flow

SI.Position r_0[3] "Position vector from world frame to the connector frame origin, resolved in world frame"; Frames.Orientation R

"Orten entropy object to rotate the world frame into the connector frame";

flow SI.Force f[3] "Cut-force resolved in connector frame" a;

flow SI.Torque t[3] "Cut-torque resolved in connector frame";

flow !

end Frame;

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Modelica Multibody Basics: Connectors II

➤ Modelica's general connections rules

- ➤ non-flow variables are set to be equal, i.e. frames coincide
- - ✓ are consequently set to zero if connector is not connected to anything

see Modelica.UsersGuide.Connectors for a comparison of connectors in various domains

Modelica Multibody Basics: Components I

- ➤ Kinematics:
 - Component equations provide relations between connector variables on position level
 - MultiBody.Parts.FixedTranslation
 i.e. fixed translation of frame_b with respect to frame_a

Modelica Multibody Basics: Components II

- → Dynamics
 - ➤ Newton-Euler equations
 - ➤ MultiBody.Parts.Body

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Modelica Multibody Basics: Elementary Components I

- ✓ Modelica.Mechanics.MultiBody.World
 - ✓ defines inertial frame, gravity, animation defaults

- Modelica.Mechanics.MultiBody.Forces

 - ✓ interface to Real input functions and 1D mechanics
 - several spring/damper configurations

Modelica Multibody Basics: Elementary Components II

- Modelica.Mechanics.MultiBody.Joints
 - ✓ define specific degree of freedom
 - ✓ capability to set-up initial configuration

- Modelica.Mechanics.MultiBody.Parts
 - → Fixed, FixedTranslation and FixedRotation

Modelica Multibody Basics: Elementary Components III

duration=2

k=1

freqHz=1

für Luft- und Raumfahrt eV

in der Helmholtz-Gemeinschaft

Multibody Systems in Modelica > 30.10.2007

slide 18

Modelica Multibody Basics: Analysis Methods

- ✓ Model check
- ✓ Experiment setup, translation and time simulation

InversePendulum - Tutorial.excercises.InversePendulu Image: Im	
Packages Packages Synta Chec DAE Chec Chec Chec DAE Chec Chec Chec Chec Chec Chec Chec Chec	ssages - Dymola Image: Stages - Dymola ax Error Translation Dialog Error Simulation Version Management k of <u>Lutorial excercises.InversePendulum</u> : having 1836 scalar unknowns and 1836 scalar equations. k of Tutorial.excercises.InversePendulum successful. Image: Stage Sta
Variables Values Unit De Variables Values Unit De InversePendulum_StateControl 1 InversePendulum 2 World bodyBox bodyCylinder fixedTranslation actuatedRevolute prismatic	Speed: 1 Speed:
▲ Advanced	Number of intervals 500 Integration Algorithm Dassl Tolerance 0.0001 Fixed Integrator Step 0

Modelica Multibody Basics: Analysis Methods

- ✓ Model check
- ✓ Experiment setup, translation and time simulation
- - ✓ Menu: File→Libraries→LinearSystems

Example 1: Control of an inverse pendulum I

- ✓ Initial model
 - → Box: 0.5 x 0.25 x 0.25 m
 - → actuatedRevolute: 90° phi_offset, 5° phi_start
 - ✓ perform time simulation and eigenvalue analysis

Example 1: Control of an inverse pendulum II

- ✓ PD-Control of angle only
 - ✓ use extend to inherit initial model
 - use transient response and pole placement to set-up contoller gains

Example 1: Control of an inverse pendulum III

in der Helmholtz-Gemeinschaft

Slide 23 Multibody Systems in Modelica > 30.10.2007

Contents

- - Modelica, very briefly
- Modelica Multibody Basics
- Exercise 1: Control of an inverse pendulum
- ➤ Modelica Multibody Advanced
- FlexibleBodies Library: Beams
- Exercise 3: Aircraft Fin
- FlexibleBodies Livbrary: General bodies based on finite element data

Modelica Multibody Advanced: State selection I

- ✓ Joints AND bodies have potential states
 - → number of joints is independent from number of bodies
 - ✓ an assignment of joints to bodies is not mandatory

here: body coordinates: position, quaternions and their derivatives are used as states

Modelica Multibody Advanced: State selection II

- relative joint coordinates are used as states if possible ✓ default: stateSelect = StateSelect.prefer ✓ e.g. Multibody.Joints.Prismatic frame a frame b final parameter Real e[3]=Modelica.Mechanics.MultiBody.Frames.normalize(n) "Unit vector in direction of prismatic axis n"; SI. Position s(stateSelect=if enforceStates then StateSelect.always else StateSelect.prefer) "Relative distance between frame a and frame b"; SI.Velocity v(stateSelect=if enforceStates then StateSelect.always else StateSelect.prefer) "First derivative of s (relative velocity)"; body1 in Tutorial.examples1.ThreeSprings ? X Advanced Add modifiers Initialization Animation General enforceStates = true, if absolute variables of body object shall be used as states (StateSelect.always) false useQuaternions true
 - = true, if quaternions shall be used as potential states otherwise use 3 angles as potential states
 - Sequence of rotations to rotate world frame into frame ia around the 3 angles used as potential states

Advanced user may influence state selection directly

sequence_angleStates

{1.2.3}

Modelica Multibody Advanced: Loops I

- → Standard case
 - ✓ no specific action by the user is required
 - every connector is one node in the virtual connection graph

 - ✓ loops are virtually broken

Modelica Multibody Advanced: Loops I

- ✓ Standard case
 - ✓ no specific action by the user is required
 - ✓ every connector is one node in the virtual connection graph

 - ✓ loops are virtually broken

✓ the related constraint equations are provided
$$⇒ \mathsf{DAE}$$

$$0 = f(\dot{x}, x, y, t, \ldots) \quad \mathsf{dim}(f) = \mathsf{dim}(x) + \mathsf{dim}(y)$$

 Equations are rearranged to get a sequence for model evaluation (Block Lower Triangle-partitioning)

Modelica Multibody Advanced: Loops I

- ✓ Standard case
 - ✓ no specific action by the user is required
 - ✓ every connector is one node in the virtual connection graph

 - ✓ loops are virtually broken
 - ✓ the related constraint equations are provided $⇒ \mathsf{DAE}$ $0 = f(\dot{x}, x, y, t, ...) \quad \mathsf{dim}(f) = \mathsf{dim}(x) + \mathsf{dim}(y)$
 - Equations are rearranged to get a sequence for model evaluation (Block Lower Triangle-partitioning)
 - Equations to be differentiated are determined (Pantelides algorithm)
 - ✓ superflous potential states are deselected dynamically (dummy derivative method) ⇒ ODE:

$$\dot{x} = f(x, t, \ldots)$$

Modelica Multibody Advanced: Loops II

 review Translation Log in order to streamline simulation performance with model adjustments

Modelica Multibody Advanced: Loops III

🔒 Messages - I	Dymola			_ 🗆 X
Syntax Error	Translation	Dialog Error	Simulation	V · ·
Translation of <u>I</u> Error: The probl It has 2234 sca The Real part The Integer pa The Boolean p The String par Attempting to fu	utorial.Example em is structurall lar unknowns a has 2162 unkn art has 72 unkn part has 0 unknow t has 0 unknow rther localize sir	<u>s. SliderCrank</u> : ly singular: nd 2234 scalar e iowns and 2162 owns and 72 eq owns and 0 equ wns and 0 equations and 0 equations	equations. equations. uations. ations. ons.	
Singularity of <u>Tutorial.Examples.SliderCrank</u> is at the top level. Error: The model <u>Tutorial.Examples.SliderCrank</u> is structurally singular. The problem is structurally singular for the element type Real. The number of scalar Real unknown elements are 2162. The number of scalar Real equation elements are 2162. The model includes the following hints: All Forces cannot be uniquely calculated. The reason could be that the mechanism contains a planar loop or that joints constrain the same motion. For planar loops, use in one revolute joint per loop the option PlanarCutJoint=true in the Advanced menu.				
The problem is structurally regular for the element type Integer. The number of scalar Integer elements are 72. The problem has no elements of type Boolean. The problem has no elements of type String. Translation aborted. ERROR: 2 errors were found				

Modelica Multibody Advanced: Loops IV

- Use of aggregrated joint objects
 - to profit from analytical loop handling according to the "characteristic pair of joints" method by the group of Prof. Hiller

r={0,-0.1,0}

Modelica Multibody Advanced: Initialisation

- ✓ Initialisation default:
 - ✓ every state is assumed to be arbitrary unless otherwise provided
 - Newton solver starts with guess value zero in order to find consistent initial states unless otherwise provided
- If initialisation fails
 - determine, i.e. fix, characteristic variables/states in order to influence the system of equations to solve
 - ✓ provide "good" guesses for initial states
 - ✓ be aware of singular positions, e.g. piston at bottom dead center
 - keep system of equations consistent

most of net			
pri_start	5	 deg 	Initial value of rotation angle phi (fixed or guess value)
w_start	0	 deg/s 	Initial value of relative angular velocity w = der(phi)
a_start	0	deg/s2	Initial value of relative angular acceleration a = der(w)

Exercise 2: Hexapod I

✓ The modelling concept

Exercise 2: Hexapod II

Exercise 2: Hexapod III

Exercise 2: Hexapod IV

➤ Model Basis

model Basis

import SI = Modelica.Slunits; parameter SI.Length Lb=3.8 " length of a side of the basis"; final parameter SI.Length radiusBasis=Lb/sqrt(3); final parameter SI.Length deltaX=radiusBasis/2; final parameter SI.Length deltaY=Lb/2;

Exercise 2: Hexapod V

Contents

- - Modelica, very briefly
- Modelica Multibody Basics
- Exercise 1: Control of an inverse pendulum
- Modelica Multibody Advanced
- **7** Exercise 2: Hexapod
- → FlexibleBodies Library: Beams
- → Exercise 3: Aircraft Fin
- FlexibleBodies Livbrary: General bodies based on finite element data

FlexibleBodies Library: Beams versus ModalBody

<u>Common Issues</u> Floating frame of reference Equations of motion SID-data-structure Standard-Input-Data: Wallrapp '94

Disjunctive Issues

Analytical beam description

Modelica generated SID

Animation uses beam description

FEM-based body description External generated SID Animation based on external data

FlexibleBodies Library: Equations of motion

$$egin{pmatrix} mI_3 & ext{sym.} \ m ilde{d}_{CM} & J & \ C_t & C_r & M_e \end{pmatrix} egin{pmatrix} a_R \ lpha_R \ ec{q} \end{pmatrix} = h_\omega - egin{pmatrix} 0 & \ 0 & \ K_e \, q + D_e \, \dot{q} \end{pmatrix} + egin{pmatrix} f_a \ f_lpha \ f_q \end{pmatrix}$$

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft Bremer/Pfeiffer '92, Schwertassek/Wallrapp '99

FlexibleBodies Library: Beam theory

- → 2nd order displacement field
 - → bending in xy- und xz- plane, torsion and lengthening

$$u(x,t) = \begin{pmatrix} u \\ v \\ w \end{pmatrix} + \begin{pmatrix} -\frac{1}{2} \int_{0}^{x} v'^{2} + w'^{2} dx \\ -\int_{0}^{x} \int_{0}^{\overline{x}} \theta w'' d\overline{x} d\overline{x} + \int_{0}^{x} u'v' d\overline{x} \\ -\int_{0}^{x} \int_{0}^{\overline{x}} \theta w'' d\overline{x} d\overline{x} + \int_{0}^{x} u'v' d\overline{x} \\ \int_{0}^{x} \int_{0}^{\overline{x}} \theta v'' d\overline{x} d\overline{x} + \int_{0}^{x} u'w' d\overline{x} \end{pmatrix}$$

- Raleigh-Ritz-approach for a straight, homogenous, isotropic beam with constant cross section
 - expansion with analytic eigenvalue-solutions of the Euler-Bernoulli beam

 $\Phi_i =$

$$v(x,t) = \boldsymbol{\Phi}_v(x) \boldsymbol{q}_v(t)$$

Bremer/Pfeiffer '92, Timoshenko '55

$$\left(\begin{array}{c} \cosh(au_i x) \\ \sinh(au_i x) \\ \cos(au_i x) \\ \sin(au_i x) \end{array}
ight)^T \left(\begin{array}{c} c_1 \\ c_2 \\ c_3 \\ c_4 \end{array}
ight)^T$$

FlexibleBodies Library: Beam menu set-up I

FlexibleBodies Library: Beam menu set-up II

FlexibleBodies Library: Boundary Conditions I

 r_R

 (\mathbf{I})

✓ Mechanical interpretation

$$r(c,t) = r_R(t) + c + u(c,t)$$

 $oldsymbol{
abla}$ let's say: frame of reference is pinned at frame_a with c=0

 \Rightarrow motion of frame_a is completely described by $r_R(t)$ (and related orientation)

$$\Rightarrow u(c=0,t) = 0$$
 $\frac{\partial u}{\partial c}(c=0,t) = 0$

clamped-free: tangent frame corresponds to cantilever beam boundary conditions

FlexibleBodies Library: Boundary Conditions II

 → supported-supported: chord frame

$$u(c = 0, t) = 0$$
 $u(c = (l, 0, 0), t) = 0$

- ✓ free-free: Buckens frame
 - ✓ linear and angular momentum due to body deformation are zero
- every combination of tangent, chord and Buckens frames in different spatial directions is possible
- - align the boundary conditions with the degree of freedom of the joints to which the beam is attached
 - ✓ boundary conditions are related to constraint forces
 - a joint cannot transmit a constraint force in the direction of its motion
 - → BUT: Boundary conditions are validation issues

FlexibleBodies Library: A classic pitfall I

FlexibleBodies Library: A classic pitfall II

- ✓ Mechanical background
- ✓ Geometrical background
 - \checkmark analytically: $u = c \cdot x$
 - → expansion with eigenmodes: $u = \sin(\frac{2x}{\pi l}) + \sin(\frac{2x}{3\pi l}) + \dots$
- ✓ It is proven that Raleigh-Ritz approach converges against true value
 - → but how fast ?
 - ✓ this is an extreme example, e.g. bending is less sensitive
- ✓ Check whether a higher number of modes changes results !

Example 3: AircraftFin

→ fin

- mounted in a frame with 15° inclination
- ✓ profil: squarepipe 0.4 x 0.05 x 0.01 m
- → 2 m long
- → 2730 kg/m³, 7 · 10¹⁰ N/m² (aluminium)
- → 1 xz-bending and 1 torsion mode
- **7** 5 mid-nodes $ξ = {0.2, 0.4, 0.5, 0.6, 0.8}$
- actuator to turn the fin (force as cos-function of t, 1 Hz, 10 N amplitude)
- 4 constant forces, 10 N in world-x-direction, to represent flow forces

```
model AircraftFin
```

```
import Modelica.Constants.pi;
parameter Real a= 0.25/cos(pi/12);
final parameter Real b=a*sin(pi/12)+2.1;
final parameter Real c=a*sin(pi/12)+1.05;
```


Contents

- → Introduction
 - ➤ Modelica, very briefly
- ➤ Modelica Multibody Basics
- Modelica Multibody Advanced
- **7** Exercise 2: Hexapod

- ✓ FlexibleBodies Library: General bodies based on finite element data

FlexibleBodies Library: FEM-preprocessing

- ➤ Simpack-FEMBS: FEM to multibody system preprocessor
- ✓ Maintained and distributed by INTEC GmbH, Oberpfaffenhofen

- ✓ Supports ABAQUS, ANSYS, MSC.Nastran, NX Nastran, I-DEAS, PERMAS
- Reduction of the FE-model in 2 steps
 - ✓ in FE-tool, e.g. Guyan- or Craig-Bampton-method ⇒ system matrices, nodes to retain, eigenmodes, mesh information
 - ✓ in Simpack-FEMBS ⇒ modes selection (and generation), multibody description, animation
- data
 SID- and wavefront-file as results

FlexibleBodies Library: ModalBody menu set-up I

	🖨 modalBody in FlexibleBodies.Examples.ModalBodies.Internal.CylinderElasticRodPiston	
	General Initialization Advanced Add modifiers	
	Component	Icon
ma da ID a du	Name modalBody	ModalBody
тодаводу	Comment	
	Model	
	Path FlexibleBodies.ModalBody	
	Comment General flexible body model based on a modal description	
6	Parameters	
T	SID_fileName FlexibleBodies.Utilities.DataDirectory + ''rodV2.SID_F	EM'' 📰 🕨 File name of SID file describing the flexible body dynamics
	WavefrontFile FlexibleBodies.Utilities.DataDirectory + "rodV2small	lobj"
	Simulation nodes (= subset of finite element nodes) associated with connectors nodes_	sphericaUoint and nodes_clampled
	sphericalJointNodes {20001,20002}	Simulation nodes of nodes_sphericalJoint (= do not constrain rotation)
	clampedNodes fill(0, 0)	Simulation nodes of nodes_clampled (= constrain translation and rotation)
	Animation	
	Solid animation Exaggeration factor to visualize deformation	1 ► Color {0,0,255} ▼ ► Specular coefficient 0.7 ▼ ►
	Wire frame animation 🔽 🕨 Exaggeration factor to visualize deformation 🔽	00 ► Color (),155,155) 🔽 📰 ► Specular coefficient 🛛 🔍 ►

FlexibleBodies Library: ModalBody menu set-up II

Deutsches Zentrum
 Gür Luft- und Raumfahrt e.V.
 in der Helmholtz-Gemeinschaft

FlexibleBodies Library: ModalBody menu set-up II

	😑 modalBody in Tutorial.Internal.testmodalBody	<u>?</u> ×
	General Initialization Advanced Add modifiers	
modalBody	enforceStates true + = true, if elastic joint coordinates shall be used as states useQuaternions true + = true, if quaternions shall be used as potential statesotherwise use 3 angles as potential states sequence_angleStates {1,2,3} > Sequence of rotations to rotate world frame into frame_aaround the 3 angles used as potential states	s
	Nominal 1.e-6 Nominal values of generalized coordinates (for numerical scaling) qd_nominal 1.e-4 Nominal values of generalized velocities (for numerical scaling) Structural damping	
	OK Info Cano	cel

FlexibleBodies Library: Animation

- ✓ Advantage of the modal approach:
 - → only few geometrical information is needed \Rightarrow efficiency !
- ✓ Disadvantage of the modal approach:
- ✓ Simulation points versus animation points
 - new animation feature in Dymola for wavefront data*

Slide 56 Multibody Systems in Modelica > 30.10.2007

FlexibleBodies Library: 4 Cylinder Engine

- → FEM

 - → Piston rod 12531 nodes
- Multibody representation

 - - → 2 torsion eigenmodes
 - → 273 simulation nodes
 - Piston rod
 - ✓ 4 eigenmodes each
 - → Time integration with gas force, 38 states, \approx 6 cpu-s per s

FlexibleBodies Library: 4 Cylinder Engine II

FlexibleBodies Library: Quo vadis?

- ✓ ModalBody is an issue of ongoing discussion
 - ✓ relies on an appopriate FE-preprocessor
 - \checkmark a 3rd third party product
 - in principle agreements were made, but no contracts are yet signed
 - ✓ the 1st implementation uses additional c-code
 - there is no distribution process to support the application on real-time platforms today
 - → the 2nd implemenation is pure Modelica code
 - ✓ might be good enough for moderate large models ?
 - ✓ release by the end of this year ?
 - → an additional license key called ExtFlexibleBodies
- ➤ Besides beams: implementation of other generic structures "on demand"
 - ✓ brake discs: annular Kirchhoff plate
 - ✓ framework structures

Thank you very much for your attention

