


CHAPTER 1

Manifolds and Vector Fields
s ——— L om—

Better is the end of a thing than the beginning thereof.
Ecclesiastes 7:8

As students we learn differential and integral calculus in the context of euclidean space
IR", butit is necessary to apply calculus to problems involving “curved” spaces. Geodesy
and cartography, for example, are devoted to the study of the most familiar curved
surface of all, the surface of planet Earth. In discussing maps of the Earth, latitude and
longitude serve as “coordinates,” allowing us to use calculus by considering functions
on the Earth’s surface (temperature, height above sea level, etc.) as being functions of
latitude and longitude. The familiar Mercator’s projection, with its stretching of the
polar regions, vividly informs us that these coordinates are badly behaved at the poles:
that is, that they are not defined everywhere; they are not “global.” (We shall refer to
such coordinates as being “local,” even though they might cover a huge portion of the
surface. Precise definitions will be given in Section 1.2.) Of course we may use two
sets of “polar” projections to study the Arctic and Antarctic regions. With these three
maps we can study the entire surface, provided we know how to relate the Mercator to
the polar maps.

We shall soon define a “manifold” to be a space that, like the surface of the Earth, can
be covered by a family of local coordinate systems. A manifold will turn out to be the
most general space in which one can use differential and integral calculus with roughly
the same facility as in euclidean space. It should be recalled, though, that calculus in
R’ demands special care when curvilinear coordinates are required.

The most familiar manifold is N-dimensional euclidean space R" | that is, the space
of ordered N tuples (x!,..., x") of real numbers. Before discussing manifolds in
general we shall talk about the more familiar (and less abstract) concept of a submanifold
of RY, generalizing the notions of curve and surface in R?,

1.1. Submanifolds of Euclidean Space

What is the configuration space of a rigid body fixed at one point of R"?
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1.1a. Submanifolds of RY

Euclidean space, R", is endowed with a global coordinate system (x!, ... x¥ ) and |
the most important example of a manifold.

In our familiar R®, with coordinates (x,y,2), alocus 7 = F(x, y) describes a (7
dimensional) surface, whereas a locus of the form y = G(x), z = H (x), describes
(I-dimensional) curve. We shall need to consider higher-dimensional versions of thes
important notions.

A subset M = M" C R™" is said to be an n-dimensional submanifold of R""
if locally M can be described by giving r of the coordinates differentiably in terms o
the n remaining ones. This means that given p € M, a neighborhood of pon M ca
be described in some coordinate system (eoy) = b Xyt Ly of RO b
r differentiable functions

Y=o 08, a=1, .

We abbreviate this by y = f(x), or even y = y(x). We say that x!, ..., x" are loca
(curvilinear) coordinates for M near p.

Examples:

(M y'= f(x',..., x") describes an n-dimensional submanifold of R**!,

v\_

Figure 1.1

In Figure 1.1 we have drawn a portion of the submanifold M. This M is the graph
of a function f : R" — R, thatis, M = {(x,y) e R"! | y=f(x)}). Whenn = 1
M is a curve; while if n = 2, it is a surface.

(ii) The unit sphere x* + y* 4 z% = 1 in R>. Points in the northern hemisphere can be
described by z = F(x,y) = (1 — x2 — y)'/2 and this function is differentiable
everywhere except at the equator x2 + y* = 1. Thus x and y are local coordinates for
the northern hemisphere except at the equator. For points on the equator one can solve
for x or y in terms of the others. If we have solved for x then y and z are the two local
coordinates. For points in the southern hemisphere one can use the negative square
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root for z. The unit sphere in R is a 2-dimensional submanifold of R®. We note that we
have not been able to describe the entire sphere by expressing one of the coordinates,
say z, in terms of the two remaining ones, z = F (x, v). We settle for local coordinates.

More generally, given r functions F® €SP R ye)ofn +r variables,
we may consider the locus M” © R"*" defined by the equations

Fx,y) = ¢°, ', ... , ¢") constants

If the Jacobian determinant

T | (x 05 Yo v

at (xo, Yo) € M of the locus is not 0, the implicit function theorem assures us that
locally, near (x,, Yo), we may solve F X, =ca=1,... . 1y for the y’s in terms
of the x’s

,<Q — .\QC«_, ...,\<:V

We may say that “a portion of M" near (x,, Yo) 18 a submanifold of R™*" » If the
Jacobian s£ 0 az all points of the locus, then the entire M" is a submanifold,

Recall that the Jacobian condition arises as follows. If F® (x,y) = ¢* can be
solved for the y’s differentiably in terms of the xs, y# = yP(x), then if, for fixed i,
we differentiate the identity F(x, y(x)) = ¢® with respect to x', we get

dFe IF*] 9yP
+MU or e 0

Axi 5 Mvmwf dx!
and
1\ B
ayf 3 gF]! dF
axi ~ dy dxt

2

provided the subdeterminant aF', .., Fny/a(!t, ..., ¥') is not zero. (Here
([8F/3y]™")8, is the Ba entry of the inverse to the matrix dF/dy; we shall use
the convention that for matrix indices, the index to the left always is the row index,
whether it is up or down.) This suggests that if the indicated Jacobian is nonzero then
we might indeed be able to solve for the ¥’s in terms of the x’s, and the implicit func-
tion theorem confirms this. The (nontrivial) proof of the implicit function theorem
can be found in most books on real analysis,

Still more generally, suppose that we have  functions of n+-r variables, F¥(x!, ...,
x"*7). Consider the locus F® (x) = c®. Suppose that at cach point xy of the locus the
Jacobian matrix

oF®
axi

o=1, . r i=1,...,n-+r

hasrank . Then the equations F% = ¢ define an n-dimensional submanifold of R+
since we may locally solve for r of the coordinates in terms of the remaining n.
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, grad G

Fx, y,2)=0 grad F

fm G(x, Y, 2)=0

Figure 1.2

In Figure 1.2, two surfaces F = 0 and G = 0 in R” intersect to yield a curve M.

The simplest case is one function F of N variables (x', ..., x™). If at each point
of the locus F = ¢ there is always at least one partial derivative that does not
vanish, then the Jacobian (row) matrix [0 F/9x', 0 F Jox%, . 0F /0x"] has rank 1
and we may conclude that this locus is indeed an (N — 1)-dimensional submani-
fold of RV, This criterion is easily verified, for example, in the case of the 2-sphere
Fx,y,z) = x>+ y>+ 72 =1 of Example (ii). The column version of this row
matrix is called in calculus the gradient vector of F. In R? this vector

aF

ax
ar
dy
ar

dz

is orthogonal to the locus F = 0, and we may conclude, for example, that if this
gradient vector has a nontrivial component in the z direction at a point of F = 0,
then locally we can solve for z = z(x, y).

A submanifold of dimension (N — 1) in RY, that is, of “codimension” 1, is called
a hypersurface.
The x axis of the xy plane R? can be described (perversely) as the locus of the quadratic
F(x,y) 1= y* = 0. Both partial derivatives vanish on the locus, the x axis, and our
criteria would not allow us to say that the x axis is a |-dimensional submanifold of
R%, Of course the x axis is a submanifold; we should have used the usual description
G(x, y) := y = 0. Our Jacobian criteria are sufficient conditions, not necessary ones.
The locus F{x, y) := xy = 0 in %m, consisting of the union of the x and y axes,
is not a 1-dimensional submanifold of R?, Tt scems “clear” (and can be proved) that
in a neighborhood of the intersection of the two lines we are not going to be able to
describe the locus in the form of y = f(x) or x = g(y), where f, g, are differen-
tiable functions. The best we can say is that this locus with the origin removed is a
I-dimensional submanifold.
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1.1b. The Geometry of Jacobian Matrices: The “Differential”

The tangent space to R" at the point x, written here as R”, is by definition the vector
space of all vectors in R” based at x (i.e., it is a copy of R” with origin shifted to x).

Letx',...,x" and y', ..., y" be coordinates for R" and R’ respectively. Let F :
R"* — R’ be a smooth map. (“Smooth” ordinarily means infinitely differentiable. For
our purposes, however, it will mean differentiable at least as many times as is necessary
in the present context. For example, if F is once continuously differentiable, we may
use the chain rule in the argument to follow.) In coordinates, F is described by giving
r functions of n variables

V¥ = F*(x) oa=1...,r
or simply y = F(x). We will frequently use the more dangerous notation y = y(x).

Let yo = F(xy); the Jacobian matrix (3y* /9x") (x¢) has the following significance.

v
v =%(0) w=Y0=Fy

YO =F(x()

image of R'under F

x = x(t)

\«_,... y

¥

Figure 1.3

Let v be a tangent vector to R" at x,. Take any smooth curve x Qv. such that x(0) = x,
and x(0) := (dx/d1)(0) = v, for example, the straight line x(f) = xo + rv. The image
of this curve

y(t) = F(x(1))

has a tangent vector w at y, given by the chain rule

@ _ a — (0" y [0y ;
W =310 =3 (55 Jod @ = 37 (2 Joow

i=1 i=]

The assignment v > w is, from this expression, independent of the curve x () chosen,
and defines a linear transformation, the differential of F at X

F, . %mc — R’ F.(v) =w (1.1)

Yo
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whose matrix is simply the Jacobian matrix (8y®/dx")(xo). This interpretation of the
Jacobian matrix, as a linear transformation sending tangents to curves into tangents
to the image curves under F, can sometimes be used to replace the direct computation
of matrices. This philosophy will be illustrated in Section 1.1d.

1.1c. The Main Theorem on Submanifolds of RV

The main theorem is a geometric interpretation of what we have discussed. Note that
the statement “F has rank r at xo,” that is, [0y%/dx'](xo) has rank r, is geometrically
the statement that the differential

F,: %mc — R’

Yo=F(x0)

is onto or “surjective”; that Is, given any vector w at yy there is at least one vector v at
xo such that F.(v) = w. We then have
Theorem (1.2): Let F : R™™ — R’ and suppose that the locus
—1 . -
F7'(yo) i={x e R™™" | F(x) = yo}
is not empty. Suppose further that for all xo € F~' ()
. n+r r
Fy: %é — H%zo

is onto. Then F~1(yy) is an n-dimensional submanifold of R

F 0w

X0

'
e
’
1
'
¥
[
.
.
]
D
N
’
'
'

X

P S - R L

R2

Figure 1.4



SUBMANIFOLDS OF EUCLIDEAN SPACE 9

The best example to keep in mind is the linear “projection” F : R® — R?,
F(x', x%, x%) = (¢!, x?), that is, ' = x! and y? = x2 In this case, x> serves as
global coordinate for the submanifold x' = y/, x? = y2, that is, the vertical line.

1.1d. A Nontrivial Example: The Configuration Space
of a Rigid Body

Assume a rigid body has one point, the origin of R, fixed. By comparing a cartesian
right-handed system fixed in the body with that of R® we see that the configuration of
the body at any time is described by the rotation matrix taking us from the basis of R?
to the basis fixed in the body. The configuration space of the body is then the rotation
group SO(3), that is, the 3 x 3 real matrices x = (x; ;) such that

x"=x"" and detx >0
where T denotes transpose. (If we omit the determinant condition, the group is the
full orthogonal group, O(3).) By assigning (in some fixed order) the nine coordinates
X114, X12, - - - X33 10 any matrix x, we see that the space of all 3 x 3 real matrices,
M (3 x 3), is the euclidean space R’. The group O(3) is then the locus in this R? defined
by the equations x’ x = I, that is, by the system of nine quadratic equations (i, k)

3
(i, k) Mﬁ.t«; = ik
je=l1

We then have the following situation. The configuration of the body at time ¢ can be
represented by a point x () in R?, but in fact the point x(t) lies on the locus O(3) in
IR”. We shall see shortly that this locus is in fact a 3-dimensional submanifold of R®.
As time ¢ evolves, the point x(¢) traces out a curve on this 3-dimensional locus. Since
0O(3) is a submanifold, we shall see, in Section 10.2¢ from the principle of least action,
that this path is a very special one, a “geodesic” on the submanifold O(3), and this in
turn will yield important information on the existence of periodic motions of the body
even when the body is subject to an unusual potential field. All this depends on the fact
that O(3) is a submanifold, and we turn now to the proof of this crucial result.

Note first that since x” x is a symmetric matrix, equation (i, &) is the same as equation
(k, i); there are, then, only 6 independent equations. This suggests the following. Let

Sym® := {x e M(3 x 3) | xT = x}

be the space of all symmetric 3 x 3 matrices. Since this is defined by the three linear
equations x;, — xy; = 0,1 % k, we see that Sym® is a 6-dimensional linear subspace of
R?; that is, it can be considered as a copy of R®. To exhibit 0O(Q3) as a locus in R?, we
consider the map

F R’ - R®=Sym® defined by F(x) =x"x -1

O(3) is then the locus F~1(0). Let xg € F~1(0) = O(3). We shall show that F, :

9 6
R}, — Sym® is onto.
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.. Sym, a copy of RS

FY0) =0(3)

Figure 1.5

Let w be tangent to Sym® at the zero matrix. As usual, we identify a vector at the
origin of R" with its endpoint. Then w is itself a symmetric matrix. We must find v, a
tangent vector to R® at Xo, such that F,v = w. Consider a general curve x = x(¢) of
matrices such that x (0) = xy; its tangent vector at x; is x(0). The image curve

Fx(®) =x()"x(r) — 1

has tangent at r = 0 given by
d o -
.mm:A\«Qv:\uo = x(0)" xo + xl 1 (0)
We wish this quantity to be w. You should verify that it is sufficient to satisfy the matrix
equation xj x(0) = w/2. Since xy € O(3), x7 = x;' and we have as solution the matrix
product v =x = xow/2. Thus F, is onto at xy and by our main theorem 0B)= F1(0)
is a (9 — 6) = 3-dimensional submanifold of R,

What about the subset SO(3) of O(3)? Recall that each orthogonal matrix has de-
terminant =1, whereas SO(3) consists of those orthogonal matrices with determinant
+1. The mapping

det: R® - R

that sends each matrix x into its determinant is continuous (it is a cubic polynomial
function of the coordinates x;;) and consequently the two subsets of O(3) where det
is +1 and where det is —1 must be separated. This means that SO(3) itself must have
the property that it is locally described by giving 6 of the coordinates in terms of the
remaining 3, that is, SO(3) is a 3-dimensional submanifold of R®.

Thus the configuration space of a rigid body with one point fixed is the group SO(3).
This is a 3-dimensional submanifold of R°. Each point of this configuration space lies
in some local curvilinear coordinate system.
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In physics voowf Eo coordinates in an n-dimensional configuration space are usu-
ally labeled ¢', ..., ¢". For SO(3) physicists usually use the three “Euler angles” as
coordinates. T gm@ oooEEmﬁmm do not cover all of SO(3) in the sense that they become
singular at certain points, just as polar coordinates in the plane are singular at the origin.

Problems

1.1(1) Investigate the locus x? + y2 — 22 = ¢ in R®, forc > 0, ¢ = 0, and ¢ < 0. Are
they submanifolds? What if the origin is omitted? Draw all three loci, for ¢ 1,
0, —1, in one picture.

il

!

1.1(2) SO(n) is defined to be the set of all orthogonal n x n matrices x with det x = 1.
The preceding discussion of SO(3) extends immediately to SO(n). What is the
dimension of SO(n) and in what euclidean space is it a submanifold?

1.1(3) Is the special linear group
Sl (n) := {n x n real matrices x | detx = 1)

a submanifold of some R™ ? Hint: You will need to know something about 9/ x;;
(det x); expand the determinant by the j column.This is an example where it
might be easier to deal directly with the Jacobian matrix rather than the differ-
ential.

1.1(4) Show, in R3, that if the cross product of the gradients of F and G has a nontrivial
component in the x direction at a point of the intersection of F = 0 and G = 0,
then x can be used as local coordinate for this curve.

1.2. Manifolds

In learning the sciences examples are of more use than precepts.
Newton, Arithmetica Universalis (1707)

The notion of a “topology” will allow us to talk about “continuous” functions and points
“neighboring” a given point, in spaces where the notion of distance and metric might
be lacking.

The cultivation of an intuitive “feeling” for manifolds is of more importance, at this
stage, than concern for topological details, but some basic notions from point set topol-
ogy are helpful. The reader for whom these notions are new should approach them as
one approaches a new language, with some measure of fluency, it is hoped, coming later.

In Section 1.2c we shall give a technical (i.e., complete) definition of a manifold.

1.2a. Some Notions from Point Set Topology
The open ball in R", of radius €, centered at a € R" is

an.Amv == AN e R _ : X—a __A mv
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The closed ball is defined by
wlmAmv == AN eR” ~ __ Xx—a|<e}

that is, the closed ball is the open ball with its edge or boundary included.

Aset U inR" is declared open if given any a € U there is an open ball of some radius
r > 0, centered at a, that lies entirely in U. Clearly each By(¢) is open if € > 0 (take
r=(e— || b—a|)/2), whereas By(e) is not open because of its boundary points. R"
itself'is trivially open. The empty set is technically open since there are no points a in it.

A set F in R" is declared closed if its complement R" — F is open. It is easy to
check that each B,(¢) is a closed set, whereas the open ball is not. Note that the entire
space R" is both open and closed, since its complement is empty.

Itis immediate that the union of any collection of open sets in R” is an open set, and it
is not difficult to see that the intersection of any finite number of open sets in R” is open.

We have described explicitly the “usual” open sets in euclidean space R". What do
we mean by an open set in a more general space? We shall define the notion of open
set axiomatically.

A topological space is a set M with a distinguished collection of subsets, to be called
the open sets. These open sets must satisfy the following.

1. Both M and the empty set are open.
2. If U and V are open sets, then so is their intersection U N V.
3. The union of any collection of open sets is open.

These open subsets “define” the topology of M.

(A different collection might define a different topology.) Any such collection of subsets

that satisfies 1, 2, and 3 is eligible for defining a topology in M. In our introductory

discussion of open balls in R" we also defined the collection of open subsets of R”.

These define the topology of R”, the “usual” topology. An example of a “perverse”

topology on R" is the discrete topology, in which every subset of R” is declared open!
In discussing R" in this book we shall always use the usual topology.

A subset of M is closed if its complement is open.

Let A be any subset of a topological space M. Define a topology for the space A
(the induced or subspace topology) by declaring V C A to be an open subset of A
provided V is the intersection of A with some open subset U of M, V = ANU. These
sets do define a topology for A. For example, let A be a line in the plane R*. An open
ball in R is simply a disc without its edge. This disc either will not intersect A or will
intersect A in an “interval” that does not contain its endpoints. This interval will be an
open set in the induced topology on the line A. It can be shown that any open set in A
will be a union of such intervals.

Any open set in M that contains a point x € M will be called a neighborheod of x.

If F:M — N is a map of a topological space M into a topological space N, we
say that F' is continuous if for every open set V C N, the inverse image F~'V =
{x e M| F(x) € V}isopenin M. (This reduces to the usual ¢, § definition in the case
where M and N are euclidean spaces.) The map sending all of R” into a single point of
IR™ is an example showing that a continuous map need not send open sets into open sets.
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If F:M — N is one to one (1 : 1) and onto, then the inverse map F~":N — M
exists. If further both F and F~! are continuous, we say that F is a homeomorphism
and that M and N are homeomorphic. A homeomorphism takes open (closed) sets into
open (closed) sets. Homeomorphic spaces are to be considered to be “the same” as
topological spaces; we say that they are “topologically the same.” It can be proved that
R" and R™ are homeomorphic if and only if m = n.

The technical definition of a manifold requires two more concepts, namely “Haus-
dorff” and “countable base.” We shall not discuss these here since they will not arise
explicitly in the remainder of the book. The reader is referred to [S] for questions
concerning point set topology. .

There is one more concept that plays a very important role, though not needed for the
definition of a manifold; the reader may prefer to come back to this later on when needed.

Atopological space X is called compact if from every covering of X by open sets one
can pick out a finite number of the sets that still covers X. For example, the open interval
(0,1), considered as a subspace of R, is not compact; we cannot extract a finite subcov-
ering from the open covering given by the sets U, = {x | I/n <x < ljn = 1,2,.

On the other hand, the closed interval [0,1] is a compact space. In fact, it is shown in
every topology book that any subset X of R" (with the induced topology) is compact
if and only if

1. X is a closed subset of R",
2. X is a bounded subset, that is, || x || < some number ¢, forall x € X.

Finally we shall need two properties of continuous maps. First
The continuous image of a compact space is itself compact.

prOOF: If f : G — M is continuous and if {U;} is an open cover of f(G) C M,
then { f ' (U;)} is an open cover of G. Since G is compact we can extract a finite
open subcover { f 71 (U,)} of G, and then {U,} is a finite subcover of f(G). 0O

Furthermore

A continuous real-valued function f : G — R on a compact space G is bounded.

PROOF: F(G)is a compact subspace of IR, and thus is closed and bounded. [J

1.2b. The Idea of a Manifold

An n-dimensional (differentiable) manifold M” (briefly, an n-manifold) is a topological
space that is locally R” in the following sense. It is covered by a family of local
(curvilinear) coordinate systems {U; x,, . .., x}}}, consisting of open sets or “patches”
U and coordinates xy in U, such that a point p € U N V that lies in two coordinate
patches will have its two sets of coordinates related differentiably

X (p) = fipl o xly  i=1,2, 0. (1.3)
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(If the functions fy; are C®, that is, infinitely differentiable, or real analytic, ..., we
say that M is C*, or real analytic, . .. .) There are more requirements; for example, we
shall demand that each coordinate patch is homeomorphic to some open subset of R”.
Some of these requirements will be mentioned in the following examples, but details
will be spelled out in Section 1.2c¢.

Examples:

(i) M" =R", covered by a single coordinate system. The condition (1.3) is vacuous.

(ii) M" is an open ball in R", again covered by one patch.

(iii) The closed ball in R” is not a manifold. It can be shown that a point on the edge of
the ball can never have a neighborhood that is homeomorphic to an open subset of
R". For example, with n = 1, a half open interval 0 < x < 1 in R! can never be
homeomorphic to an open interval 0 < x < 1 in R!,

(iv) M" = S", the unit sphere in R""'. We shall illustrate this with the familiar case
n = 2. We are dealing with the locus x* + y? + 7% = 1.

Figure 1.6

Cover S? with six “open” subsets (patches)
Ut ={pes|x(p) >0 Ui~ ={peS x(p) <0}
Uyt = {p € $*| y(p) > 0} y—={peS|yp <0
Ut =(peS|ep) >0  U~—=(peS|zp) <0}
The point p illustrated sits in [Uy+] N [Uy+] N [U+]. Project U, +into the xy
plane; this introduces x and y as curvilinear coordinates in U, +.
Do similarly for the other patches. For p € [U,+]N[U,+], p is assigned the two
sets of coordinates {(uy, u2) = (x, z)} and {(v1, v2) = (x, y)} arising from the two
projections

fl
I

Il
i

Ty, 2 Uy —> xzplane and 7,y 1 U, — xy plane
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These are related by vy = u; and vy = -+[1 — u? — u3]'/?; these are differentiable
functions provided uf -+ u3 < 1, and this is satisfied since p € U,+.

52 is “locally R?” The indicated point p has a neighborhood (in the topology of
S? induced as a subset of R?) that is homeomorphic, via the projection 7, say, to
an open subset of R (in this case an open subset of the xy plane). We say that a
manifold is locally euclidean.

If two sets of coordinates are related differentiably in an overlap we shall say
that they are compatible. On S? we could introduce, in addition to the preceding
coordinates, the usual spherical coordinates 6 and ¢, representing colatitude and
longitude. They do not work for the entire sphere (e.g., at the poles) but where they
do work they are compatible with the original coordinates.

We could also introduce (see Section 1.2d) coordinates on $2 via stereographic
projection onto the planes z = 1 and z = —1, again failing at the south and north
pole, respectively, but otherwise being compatible with the previous coordinates. On
a manifold we should allow the use of a/l coordinate systems that are compatible with
those that originally were used to define the manifold. Such a collection of compatible
coordinate systems is called a maximal atlas.

If M" is a manifold with local coordinates {U; x1, ..., x"} and W’ is a manifold with
local coordinates {V; y!', ...y}, we can form the product manifold

L' =M"x W' ={(p,q) | pe M andg € W'}

by using X, v\ﬁ ..., ¥ aslocal coordinates in U/ x V.

S'is simply the unit circle in the plane R?; it has a local coordinate & = tan~! (y/x),
using any branch of the multiple-valued function . One must use at least two such
coordinates (branches) to cover S'. “Topologically” §! is conveniently represented by
an interval on the real line R with endpoints identified; by this we mean that there is a
homeomorphism between these two models. In order to talk about a homeomorphism

identify these two points

Figure 1.7

we would first have to define the topology in the space consisting of the interval
with endpoints identified; it clearly is not the same space as the interval without the
identification. To define a topology, we may simply consider the map F : [0 < § <
2m] — R? = C defined by F(9) = ¢!’ It sends the endpoints § = 0 and 6 = 277 to
the point p = 1 on the unit circle in the complex plane. This mapis 1 : 1 and onto if we
identify the endpoints. The unit circle has a topology induced from that of the plane,
built up from little curved intervals. We can construct open subsets of the interval by
taking the inverse images under F of such sets. (What then is a neighborhood of the
endpoint p?) By using this topology we force F to be a homeomorphism.
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S! is the configuration space for a rigid pendulum constrained to oscillate in the
plane

fixed pin

Figure 1.8

The n-dimensional torus 7" := §' x S! x ... x §! has local coordinates given
by the n-angular parameters 6!, ..., 6". Topologically it is the n cube (the product
of n intervals) with identifications. Forn = 2

Lo identify

©.9)

identify

Figure 1.9

T? is the configuration space of a planar double pendulum. It might be thought that
it is simpler to picture the double pendulum itself rather than the seemingly abstract
version of a 2-dimensional torus. We shall see in Section 10.2d that this abstract
picture allows us to conclude, for example, that a double pendulum, in an arbitrary
potential field, always has periodic motions in which the upper pendulum makes p
revolutions while the lower makes q revolutions.

fixed pin

Figure 1.10

(vi) The real projective n space RP" is the space of all unoriented lines L through the
origin of R"*'. We illustrate with the projective plane of lines through the origin of R*.
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Figure 1.11

Such a line L is completely determined by any point (x, y, z) on the line, other
than the origin, but note that (ax, ay, az) represents the same line if ¢ % 0. We should
really use the ratios of coordinates to describe a line. We proceed as follows.

We cover R P? by three sets:

U, := those lines not lying in the yz plane
U, := those lines not lying in the xz plane

U, = those lines not lying in the xy plane

Introduce coordinates in the U, patch; if L € U,, choose any point (x, y, z) on L
other than the origin and define (since z # 0)
X y
Uy = —, Uy = ~—
Z z

Do likewise for the other two patches. In Problem 1.2(1) you are asked to show that
these patches make R P? into a 2-dimensional manifold.

These coordinates are the most convenient for analytical work. Geometrically, the
coordinates u1 and u5 are simply the xy coordinates of the point where L intersects
the plane z == 1.

Consider a point in R P?; it represents a line through the origin 0. Let (x, v, z) be
a point other than the origin that lies on this line. We may represent this line by the
triple [x, y, z], called the homogeneous coordinates of the point in R P? where we
must identify [x, y, z] with [Ax, Ay, Az] for all A # 0. They are not true coordinates
in our sense.

We have suceeded in “parameterizing” the set of undirected lines through the origin
by means of a manifold, M? = RP? . A manifold is a generalized parameterization
of some set of objects. R P? is the set of undirected lines throu gh the origin; each point
of RP? is an entire line in R> and RP2is a global object. If, however, one insists on
describing a particular line L by coordinates, that is, pairs of numbers (u, v), then this
can, in general, only be done locally, by means of the manifold’s local coordinates.

Note that if we had been considering directed lines, then the manifold in question
would have been the sphere 2, since each directed line L could be uniquely defined
by the “forward” point where T intersects the unit sphere. An undirected line meets S?
in a pair of antipodal points; R P? is topologically $2 with antipodal points identified.
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We can now construct a topological model of RP? that will allow us to identify
certain spaces we shall meet as projective spaces. Our model will respect the topol-
ogy; that is, “nearby points” in R P? (that is, nearby lines in R*) will be represented
by nearby points in the model, but we won’t be concerned with the differentiability
of our procedure. Also it will be clear that certain natural “distances” will not be pre-
served; in the rigorous definition of manifold, to be given shortly, there is no mention
of metric notions such as distance or area or angle.

identify identify identify

Figure 1.12

In the sphere with antipodal points identified, we may discard the entire southern
hemisphere (exclusive of the equator) of redundant points, leaving us with the north-
ern hemisphere, the equator, and with antipodal points only on the equator identified.
We may then project this onto the disc in the plane. Topologically R P? is the unit
disc in the plane with antipodal points on the unit circle identified.

Similarly, R P" is topologically the unit n sphere S” in R"™! with antipodal points
identified, and this in turn is the solid n-dimensional unit ball in R”" with antipodal
points on the boundary unit (n — 1) sphere identified.

It is a fact that every submanifold of R" is a manifold. We verified this in the case
of S ¢ R? in Example (ii). In 1.1d we showed that the rotation group SO(3) is a
3-dimensional submanifold of R?. A convenient topological model is constructed as
follows. Use the “right-hand rule” to associate the endpoint of the vector 8r to the
rotation through an angle 6 (in radians) about an axis descibed by the unit vector r.
Note, however, that the rotation s r is exactly the same as the rotation —n v and (77 +o)r
is the same as —(r — a)r. The collection of all rotations then can be represented by
the points in the solid ball of radius 7 in R® with antipodal points on the sphere of
radius 7 identified; SO(3) can be identified with the real projective space R P?.
The Mébius band Mo is the space obtained by identifying the left and right hand
edges of a sheet of paper after giving it a “half twist”

I

Y identify

Mo

Figure 1.13
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If one omits the edge one can see that M is a 2-dimensional submanifold of R
and is therefore a 2-manifold. You should verify (i) that the Mobius band sits naturally
as the shaded “half band” in the model of R P? consisting of S? with antipodal points
identified, and (ii) that this half band is the same as the {ull band. The edge of the

cap

RP”

disc

Figure 1.14

Mobius band consists of a single closed curve C that can be pictured as the “upper”
edge of this full band in RP?*. Note that the indicated “cap” is topologically a 2-
dimensional disc with a circular edge C’. If we observe that the lower cap is the same
as the upper, we conclude that if we rake a 2-disc and sew its edge to the single edge of
a Mébius band, then the resulting space is topologically the projective plane! We may
say that RP? is Mo with a 2-disc attached along its boundary. Although the actual
sewing, say with cloth, cannot be done in ordinary space R® (the cap would have to
slice through itself), this sewing can be done in R*, where there is “more room.”

1.2¢. A Rigorous Definition of a Manifold

Let M be any set (without a topology) that has a covering by subsets M = UUV U. . .,
where each subset U is in 1 : 1 correspondence ¢y : U — R" with an open subset
¢y (U) of R".

Abstract set M N
(not necessarily in R™)

Figure 1.15
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We require that each ¢ (U N V') be an open subset of R”. We require that the overlap
maps

fru=¢vogy 1dp(UNV)— R (1.4)

that is,
oy (2%
QvQAQ N <v - M - R"

be differentiable (we know what it means for a map ¢y o ¢;;' from an open set of
R" to R" to be differentiable). Each pair U, ¢y defines a coordinate patch on M; to
p € U C M we may assign the n coordinates of the point ¢y (p) in R". For this reason
we shall call ¢y a coordinate map.

Take now a maximal atlas of such coordinate patches; see Example (iv). Define a
topology in the set M by declaring a subset W of M to be open provided that given
any p € W there is a coordinate chart U, ¢y such that p ¢ U C W. If the resulting
topology for M i1s Hausdorff and has a countable base (see [S] for these technical
conditions) we say that M is an n-dimensional differentiable manifold. We say that a
map F : R? — R is of class C* if all k™ partial derivatives are continuous. It is of
class C if it is of class C* for all k. We say that a manifold M" is of class C if its
overlap maps fyy are of class C*. Likewise we have the notion of a C* manifold. An
analytic manifold is one whose overlap functions are analytic, that is, expandable in
power series.

Let F': M" — R be a real-valued function on the manifold M. Since M is a topo-
logical space we know from 1.2a what it means to say that F is continuous. We say that
F is differentiable if, when we express F in terms of a local coordinate system (U, x),
F = Fy(x', ..., x") is a differentiable function of the coordinates x. Technically this
means that that when we compose F' with the inverse of the coordinate map ¢y

muQ = Fo m_

(recall that ¢y is assumed 1 : 1) we obtain a real-valued function Fy defined on a
portion ¢y (U) of R", and we are asking that this function be differentiable. Briefly
speaking, we envision the coordinates x as being engraved on the manifold M, just
as we see lines of latitude and longitude engraved on our globes. A function on the
Harth’s surface is continuous or differentiable if it is continuous or differentiable when
expressed in terms of latitude and longitude, at least if we are away from the poles.
Similarly with a manifold. With this understood, we shall usually omit the process of
replacing F by its composition F o %m_. thinking of F as directly expressible as a
Sfunction F(x) of any local coordinates.

Consider the real projective plane R P?, Example (vi) of Section 1.2b. In terms of
homogeneous coordinates we may define a map (R® — 0) — RP? by

(x,y,2) = [x,y,7]

At a point of R? where, for example, z ¥ 0 we may use u = x/z and v = y/z
as local coordinates in R P?, and then our map is given by the two smooth functions
U= \.Ax«., v, Nv = .X\N and v = %AX, ¥, Nv = Y\N
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1.2d. Complex Manifolds: The Riemann Sphere

A complex manifold is a set M together with a covering M = U U V U ..., where
each subset U isin 1 : 1 correspondence ¢ : U — C" with an open subset ¢, (U) of
complex n-space C". We then require that the overlap maps £y, mapping sets in C" into
sets in C" be complex analytic; thus if we write fyy in the form w* = w*(z!, ..., z%)
where 2% = x* + iy* and w* = u* + iv¥, then u* and v* satisfy the Cauchy—Riemann
equations with respect to each pair (x”, y"). Briefly speaking, each w* can be expressed
entirely in terms of z', ..., z", with no complex conjugates 7" appearing. We then
proceed as in the real case in 2.3c. The resulting manifold is called an n-dimensional
complex manifold, although its topological dimension is 2n.

Of course the simplest example is C" itself. Let us consider the most famous non-
trivial example, the Riemann sphere M.

The complex plane C (topologically R?) comes equipped with a global complex co-
ordinate z = x+iy.Itis acomplex 1-dimensional manifold C'. To study the behavior of
functions at “co” we introduce a point at 0o, to form a new manifold that is topologically
the 2-sphere $?. We do this by means of stereographic projection, as follows.

(x, y) plane

(u, v) plane

side view

Figure 1.16

In the top part of the figure we have a sphere of radius 1/2, restingon a w = u + v
plane, with a tangent z = x +-iy plane at the north pole. Note that we have oriented these
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two tangent planes to agree with the usual orientation of $? (questions of orientation
will be discussed in Section 2.8).

Let U be the subset of S consisting of all points except for the south pole, let V be
the points other than the north pole, let ¢, and ¢y be stereographic projections of U
and V from the south and north poles, respectively, onto the z and the w planes. In this
way we assign to any point p other than the poles two complex coordinates, 7 = |z]e'?
and w = |w|e™". From the bottom of the figure, which depicts the planar section in the
plane holding the two poles and the point p, one reads off from elementary geometry
that |w| = 1/|z], and consequently

1

W == .\.E\ANV = M :mv

gives the relation between the two sets of coordinates. Since this is complex analytic
in the overlap U NV, we may consider S* as a 1-dimensional complex manifold, the
Riemann sphere. The point w = 0 (the south pole) represents the point z = oo that
was missing from the original complex plane C.

Note that the two sets of real coordinates (x, y) and (¢, v) make S? into a real analytic
manifold.

Problems

1.2(1) Show that RP? is a differentiable 2-manifold by looking at the transition func-
tions.

1.2(2) Give a coordinate covering for R P3, pick a pair of patches, and show that the
overlap map is differentiable.

1.2(3) Complex projective n-space CP" is defined to be the space of complex lines
through the origin of C™'. To a point (zg, 21, . .., zp) in (C™" - 0) we associate
the line consisting of all complex multiples A (zg, z4, ..., zp) of this point, A € C.
We call [z, zy, .. ., zn] the homogeneous coordinates of this line, that is, of this
point in CPT; thus [zg, z1,..., 2] = (2o, u2y, ..., uzp] forall p e (C = 0). If
zp # 0 on this line, we may associate to this point [z, 24, ..., 2] its n complex
Up coordinates zq/zp, 21/2p, ..., Zn/Zp, With zp/ 2, omitted.

Show that C P2 is a complex manifold of complex dimension 2.

Note that C P! has complex dimension 1, that is, real dimension 2. For z1#0
the Uy coordinate of the point [zg, z1] is z = zy/2zy, whereas if zy # 0 the U
coordinate is w = zy/zy. These two patches cover C P! and in the intersection
of these two patches we have w = 1/z. Thus CP' is nothing other than the
Riemann sphere!

1.3. Tangent Vectors and Mappings

What do we mean by a “critical point” of a map F : M" — V"7

We are all acquainted with vectors in R" . A tangent vector to a submanifold M" of RY
at a given point p € M", is simply the usual velocity vector x to some parameterized
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curve x == x(t) &:%z that lies on M". On the other hand, a manifold M", as defined in
the previous section, is a rather abstract object that need not be given as a subset of R”
For example, the projective plane R P? was defined to be the space of lines through the
origin of R, that is, a point in RP? is an entire line in R?; if R P? were a submanifold
of R? we would associate a point of R® to each point of RP?..We will be forced to
define what we mean by a tangent vector to an abstract manifold. This definition will
coincide with the previous notion in the case that M" is a submanifold of RY . The fact
that we understand tangent vectors to submanifolds is a powerful psychological tool,
for it can be shown (though it is not elementary) that every manifold can be realized
as a submanifold of some RY . In fact, Hassler Whitney, one of the most important
contributors to manifold theory in the twentieth century, has shown that every M" can
be realized as a submanifold of R*. Thus although we cannot “embed” RP? in IR
(recall that we had a difficulty with sewing in 1.2b, Example (vii) ), it can be embedded
in R*. It is surprising, however, that for many purposes it is of little help to use the fact
that M" can be embedded in R”, and we shall try to give definitions that are “intrinsic,”
that is, independent of the use of an embedding. Nevertheless, we shall not hesitate to
use an embedding for purposes of visualization, and in fact most of our examples will
be concerned with submanifolds rather than manifolds.

A good reference for manifolds is [G, P]. The reader should be aware, however, that
these authors deal only with manifolds that are given as subsets of some euclidean space.

1.3a. Tangent or “Contravariant’”’ Vectors

We motivate the definition of vector as follows. Let p = p(r) be a curve lying on
the manifold M"; thus p is a map of some interval on R into M". In a coordinate
system (U, xy) about the point py = p(0) the curve will be described by n functions
Xy = x{,(1), which will be assumed differentiable. The “velocity vector” p(0) was
classically described by the n-tuple of real numbers &3_\ [dtly, ....dx},/dt]y. If pg
also lies in the coordinate patch (V, xy), then this same velocity vector is described
by another n-tuple dxi, /dt]y, ..., dx} /dt],, related to the first set by the chain rule
applied to the overlap functions (1.3), xy = xy (xy),
dxi,’ M dxL N\ [dx),
dr |, dxj, dr J,

j=I

This suggests the following.

Definition: A tangent vector, or contravariant vector, or simply a vector at
s pty

po € M", callit X, assigns to each coordinate patch (U, x) holding py, an n-tuple

of real numbers

AXM\V”AXM\J...M @v

such thatif py € U NV, then

, [ ax! ; ..
v = ﬂiwl@& X (1.6)
A.\dc
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If we let Xy = (X|,,..., X},)T be the column of vector “components” of X, we
can write this as a matrix equation

Xy =cyyXy (L.7)

where the transition function ¢y is the n x n Jacobian matrix evaluated at the
point in question.

The term contravariant is traditional and is used throughout physics, and we shall use it
even though it conflicts with the modern mathematical terminology of “categories and
functors.”

1.3b. Vectors as Differential Operators

In euclidean space an important role is played by the notion of differentiating a function
f with respect to a vector at the point p

d
Dy(f) = NN.:.Q + V) ]i=0 (1.8)

and if (x) is any cartesian coordinate system we have

0 .
D) =S | L o

dx/
J

This is the motivation for a similar operation on functions on any manifold M, A real-
valued function f defined on M" near p can be described in a local coordinate system
xintheform f = f(x',..., x"). (Recall, from Section 1.2c, that we are really dealing
with the function f o¢;' where ¢y is a coordinate map.) If X is a vector at p we define
the derivative of f with respect to the vector X by
af .
X, (f) = Dx(f) =Y |==|(p)X (1.9)

~ | dx/
j

This seems to depend on the coordinates used, although it should be apparent from
(1.8) that this is not the case in R". We must show that (1.9) defines an operation that is
independent of the local coordinates used. Let (U, xy) and (V, xy) be two coordinate
systems. From the chain rule we see

C N .\ .
oy =Y () =3 (L) (2,

J J 9t
dxy 7 \oxy dxy

0 )
=Y A\ xi, = pY ()

P
axy

i

i

This illustrates a basic point. Whenever we define something by use of local coordi-
nates, if we wish the definition to have intrinsic significance we must check that it has
the same meaning in all coordinate systems.
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Note then that there is a 1 : 1 correspondence between tangent vectors X to M" at
p and first-order differential operators (on differentiable functions defined near p) that
take the special form

X/ ' 1.10
M %2 ( )

P
in a local coordinate system (x). From now on, we shall make no distinction between a
vector and its associated differential operator. Each one of the n operators 9/9x! then
defines a vector, written 8/9x’, at each p in m:@ coordinate patch.

The i™ component of 8/8x* is, from (1.9) ém:\o: by 8!, (where the Kronecker 8t is 1
ifi =aand0ifi # «). On the other hand, consider the Qa coordinate curve Eﬁcsms a
point, the curve being parameterized by x*. This curve is described by x(r) = constant
fori # o and x¥(¢) = t. The S&oc:v\ vector for this curve at parameter value ¢ has
components dx'/dt = 8. The j™ coordinate vector 8/0x7 is the velocity vector to
the j® coordinate curve NSESQRERQ by x/\ If M" C %\ﬁ andif r = (y', ..., yMT
is the usual position vector from the origin, then 8/8x/ would be written LQZ: ally
as Or/dx’,

. 9,1
O _ oyl oyt (1.11)
@i?ﬁ ?2 %2

A familiar example will be given in the next section.

1.3¢. The Tangent Space to M" at a Point

1t is evident from (1.6) that the sum of two vectors at a point, defined in terms of their
n-tuples, is again a vector at that point, and that the product of a vector by a scalar, that
1s, a real number, is again a vector.

Definition: The tangent space to M” at the point p € M", written M}, is the
real vector space consisting of all tangent vectors to M” at p. If (x) is a coordinate
system holding p, then the n vectors
o o
ox'],) T oxn »
form a basis of this n-dimensional vector space (as is evident from (1.10)) and

this basis is called a coordinate basis or coordinate frame.

If M" is a submanifold of RY, then M, is the usual n-dimensional affine subspace of
RY that is “tangent” to M"™ at P a:& SE is the picture to keep in mind.

A vector field on an open set U will be the differentiable assignment of a vector X
to each point of U; in terms of local oooam:mﬁm

X = MU X/ (%) =— mi

where the components X are &m&.w:ssgo functions of (x). In particular, each 8/8x/
is a vector field in the coordinate patch.
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Example:

0/d¢p = dr/o¢p

800 = /a0

tangent space to .S” at p = wm

Figure 1.17

We have drawn the unit 2-sphere M2 = $2 in R? with the usual spherical coordinates ¢
and ¢ (6 is colatitude and —¢ is longitude). The equations defining $2 are x = sin 0 cos ¢,
y = sinfsin¢, and 7z = cos0. The coordinate vector 3/86 = 9r/d0 is the velocity
vector to a line of longitude, that is, keep ¢ constant and parameterize the meridian by
“time” [ = 0. 8/0¢ has a similar description. Note that these two vectors at p do not
live in 8%, but rather in the linear space fw attached to S* at p. Vectors at g # p live
in a different vector space MW

Warning: Because S? is a submanifold of R* and because R carries a familiar
metric, it makes sense to talk about the length of tangent vectors to this particular 52
for example, we would say that || §/00 || = 1 and | 8/8¢ | = sinf. However, the
definition of a manifold given in 1.2¢ does not require that M be given as some specific
subset of some RY; we do not have the notion of length of a tangent vector to a general
manifold. For example, the configuration space of a thermodynamical system might
have coordinates given by pressure p, volume v, and temperature 7', and the notions
of the lengihs of /8 p, and so on, seem to have no physical significance. If we wish
to talk about the “length” of a vector on a manifold we shall be forced to introduce an
additional structure on the manifold in question. The most common structure so used
is called a Riemannian structure, or metric, which will be introduced in Chapter 2. See
Problem 1.3 (1) at this time.

1.3d. Mappings and Submanifolds of Manifolds
Let F : M" — V’ be amap from one manifold to another. In terms of local coordinates
x near p € M" and y near F(p) on V" F is described by r functions of n variables
y* = F%(x!, ..., x™"), which can be abbreviated to y = F(x) or y = y(x). If, as we
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shall assume, the functions F¢ are differentiable functions of the X’s, we say that F is
differentiable. As usual, such functions are, in particular, contingous.

Whenn = r, we say that /" is a diffeomorphism provided F is 1 : 1, onto, and if, in
addition, F~!is also differentiable. Thus such an F is a differentiable homeomorphism
(see 1.2a) with a differentiable inverse. (If 7~ does exist and the Jagobian determinant
does not vanish, 3(y!, ... Y/t o x™) s 0, then the inverse function theorem
of advanced calculus (see 1.3e) would assure us that the inverse is differentiable.)

The map £ : R — R given by v = x? is a differentiable homeomorphism, but it is
not a diffeomorphism since the inverse x = y!'/3 is not differentiable at x = 0.

We have already discussed submanifolds of R" but now we shall need to discuss
submanifolds of a manifold. A good example is the equator §' of $2.

Definition: W C M" is an (embedded) submanifold of the manifold M"
provided W is locally described as the common locus

m;@_,:;x:v =0,..., F""(xt L x) =0

of (n — r) differentiable functions that are independent in the sense that the
Jacobian matrix [d F*/dx'] has rank (n — r) at each point of the locus.

The implicit function theorem assures us that W’ can be locally described (after perhaps
permuting some of the x coordinates ) as a locus

= Frtxt, XDy, X = LX)

It is not difficult to see from this (as we saw in the case $? ¢ R*) that every embedded
submanifold of M" is itself a manifold!

Later on we shall have occasion to discuss submanifolds that are not “embedded,”
but for the present we shall assume “embedded” without explicit mention.

Definition: The differential F, of the map F' : M" — V' has the same meaning
as in the case R" — R" discussed in 1.1b. F, : My — Vi, is the linear
transformation defined as follows. For X € M o let p = p(r) be a curve on M
with p(0) = p and with velocity vector p(0) = X. Then F, X is the velocity vector
d/dt{F(p(1))};=o of the image curve at F(p) on V. This vector is independent
of the curve p = p(r) chosen (as long as p(o) = X). The matrix of this linear
transformation, in terms of the bases 8/8x at p and 8/8y at F(p), is the Jacobian
matrix
IR ay“

(F)% = ——(p) = =—(p)
dx! ax!

The main theorem on submanifolds is exactly as in euclidean space (Section 1.1c).

Theorem (1.12): Let F' : M" — V" and suppose that for some q € V' the locus
F~'(g) C M" is not empty. Suppose further that F, is onto, that is, F, is of rank
r, at each point of F~'(q). Then F~'(q) is an (n—r)-dimensional submanifold
of M".
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Example: Consider a 2-dimensional torus T? (the surface of a doughnut), embedded
inR?,

N_m = the tangent
............................ space to T at d. This
is 2-dimensional
4l affine subspace of R

Figure 1.18

We have drawn it smooth with a flat top (which is supposed to join smoothly with
the rest of the torus). Define a differentiable map (function) I : T? - Rby F(p) =z,
the height of the point p € T? above the z plane (R is being identified with the z axis)..
Consider a pointd € T and a tangent vector vto T atd. Let p = p(t) be acurve on T
such that p(0) = d and p(0) = v. The image curve in R is described in the coordinate
z for R by z(t) = z(p(r)), and it is clear from the geometry of T? C R* that z(0) is
simply the z component of the spatial vector v. In other words F,(v) is the projection
of v onto the 7 axis. Note then that F, will be onto at each point p € 72 for which the
tangent plane T2(p) is not horizontal, that is, at all points of T excepta € F ~L0),
be F~'(2), c € F71(4), and the entire flat top F~'(6).

From the main theorem, we may conclude that F~'(z) is a 1-dimensional subman-
ifold of the torus for 0 < z < 6 except for z = 0, 2,4, and 6, and this is indeed
“verified” in our picture. (We have drawn the inverse images of z = 0, 1, ...,6.)
Notice that F~!(2), which looks like a figure 8, is not a submanifold; a neighborhood
of the point b on F~!(2) is topologically a cross + and thus no neighborhood of b is
topologically an open interval on R.

Definition: If ' : M" — V7 is a differentiable map between manifolds, we say
that

(i) x € M is a regular point if F, maps M} onto V. ,,; otherwise we say that
x is a critical point.

(ii) y € V" is a regular value provided either F~'(y) is empty, or F~'(y)
consists entirely of regular points. Otherwise y is a critical value.

Our main theorem on submanifolds can then be stated as follows.
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Theorem (1.13): Ify € V" is a regular value, then F~'(y) either is empty or is
a submanifold of M" of dimension (n — r).

Of course, if x is a critical point then F(x) is a critical value. In our toroidal example,
Figure 1.18, all values of z other than 0, 2, 4, and 6 are regular. The critical points on 7'
consist of @, b, ¢, and the entire flat top of 7. These latter critical points thus fill up a
positive area (in the sense of elementary calculus) on 72 Note however, that the image
of this 2-dimensional set of critical points consists of the single critical value z = 6.
The following theorem assures us that the critical values of a map form a “small” subset
of V" the critical values cannot fill up any open set in V” and they will have “measure”
0. We will not be precise in defining “almost all”; roughly speaking we mean, in some
sense, “with probability 1.”

Sard’s Theorem (L.14): If F : M" — V' is sufficiently differentiable, then
almost all values of F are regular values, and thus for almost all points yeV’,
F~Y(y) either is empty or is a submanifold of M" of dimension (n — r).

By sufficiently differentiable, we mean the following. If n < r, we demand that F be
of differentiability class C!, whereas if n — r =k > 0, we demand that F be of class
C**1. The proof of Sard’s theorem is delicate, especially if n > r; see, for example,
[A, M, R].

1.3e. Change of Coordinates

The inverse function theorem is perhaps the most important theoretical result in all of
differential calculus.

The Inverse Function Theorem (1.15): If F : M" — V" is a differentiable
map between manifolds of the same dimension, and if at xo € M the differential
Fy is anisomorphism, thatis, it is 1 : 1 and onto, then F is a local diffeomorphism
near x.

This means that there is a neighborhood U of x such that F(U) is open in V and
£ : U — F(U) is a diffeomorphism. This theorem is a powerful tool for introducing
new coordinates in a neighborhood of a point, for it has the following consequence.

Corollary (1.16): Let x', ..., x" be local coordinates in a neighborhood U of
the point p € M". Let y', ..., y" be any differentiable functions of the x’s ( thus
yielding a map:U — R") such that
G
AxL, ..., x")
Then the y’s form a coordinate system in some (perhaps smaller) neighborhood
of p.

(p)#0
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For example, when we put x = rcos 6, y = rsinf, we have d(x, y)/d(r, 0) = r, and
$0 d(r, 8)/3(x, y) = 1/r. This shows that polar coordinates are good coordinates ina
neighborhood of any point of the plane other than the origin.

It is important to realize that this theorem is only local. Consider the map F : R? —
R? given by u = e* cosy, v = ¢* siny. This is of course the complex analytic map
w = ¢ The real Jacobian d(u, v)/d(x, y) never vanishes (this is reflected in the
complex Jacobian dw/dz = e* never vanishing). Thus F is locally 1 : 1. It is not
globally so since e?*?™ = ¢ for all integers n. u, v form a coordinate system not in
the whole plane but rather in any stripa <y < a + 27.

The inverse function theorem and the implicit function theorem are essentially equiv-
alent, the proof of one following rather easily from that of the other. The proofs are
fairly delicate; see for example, [A, M, R].

Problems

1.3(1) What would be wrong in defining || X || in an M by

X 12= > O? 2
I
1.3(2) Lay a 2-dimensional torus flat on a table (the xy plane) rather than standing as
in Figure 1.18. By inspection, what are the critical points of the map T2 > R?
projecting T2 into the xy plane?

1.3(3) Let M" be a submanifold of RN that does not pass through the origin. Look at
the critical points of the function f: M — R that assigns to each point of M the
square of its distance from the origin. Show, using local coordinates ul, U,
that a point is a critical point for this distance function iff the position vector to
this point is normal to the submanifold.

1.4. Vector Fields and Flows

Can one solve dx /dt = 8f/3x' to find the curves of steepest ascent?

1.4a. Vector Fields and Flows on R”

A vector field on R” assigns in a differentiable manner a vector v, to each p in R". In
terms of cartesian coordinates x', ..., x"

where the components v/ are differentiable functions. Classically this would be written
simply in terms of the cartesian components v = (w'(x), ..., v" C«vvw.

Given a “stationary” (i.e., time-independent) flow of water in R?, we can construct
the 1-parameter family of maps

¢ R > R’
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where ¢, takes the molecule located at p when ¢ = 0 to the position of the same
molecule ¢ seconds later. Since the flow is time-independent

G (B (P)) = byyi () = b (ds(p))
and (L.17
G (b(p) = p, ie,d, =¢ "

We say that this defines a 1-parameter group of maps. F:.Sm:ﬁ%@ if each ¢, is
differentiable, then so is each ¢!, and so each ¢, is a diffeomorphism. We shall call
such a family simply a flow. Associated with any such flow is a time-independent
velocity field

v o 4o
P dt {0
In terms of coordinates we have
c.\.va — WEM\W@
di Je=0
which will usually be written
i (x) dx’
v(x) = —
dt
Thought of as a differential operator on functions f
. o of dx’ af
Vo (f) = v(p)—— = ——
o) M Qdm»s\ : dr dx/
d )
= F ()
di dico

is the derivative of f along the “streamline” through p.

We thus have the almost trivial observation that to each flow {¢,} we can associate the
velocity vector field. The converse result, perhaps the most important theorem relating
calculus to science, states, roughly speaking, that to each vector field v in R” one may
associate a flow {¢,} having v as its velocity field, and that ¢,(p) can be found by
solving the system of ordinary differential equations

VG, 1) (1.18)
dt

with initial conditions
x(0) = p

Thus one finds the integral curves of the preceding system, and ¢, (p) says, “Move
along the integral curve through p (the ‘orbit” of p) for time ¢.” We shall now give
a precise statement of this “fundamental theorem™ on the existence of solutions of
ordinary differential equations. For details one can consult [A, M, R; chap. 4], where
this result is proved in the context of Banach spaces rather than R”. I recommend highly
chapters 4 and 5 of Arnold’s book [A2].
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The Fundamental Theorem on Vector Fields in R” (1.19): Letv be a C* vec-
tor field, k > 1 (each component v/ (x) is of differentiability class C*) on an open
subset U of R". This can be written v : U — R” since v associates to each x € U
a point v(x) € R". Then for each p € U there is a curve y mapping an interval
(—b, b) of the real line into U

vy i (=b,b) - U

such that

——L =u(y@t)) and y(0)=p

forallt € (b, b). (This says that y is an integral curve of v starting at p.) Any
two such curves are equal on the intersection of their t-domains ( “uniqueness”).
Moreover, there is a neighborhood U, of p, a real number ¢ > 0, and a C* map
DU, x (—€,¢€) > R"
such that the curve t € (—e,€) + ¢,(q) = ®(q, 1) satisfies the differential
equation
d
iw%N (q) = v(¢:(q))
ot

forallt € (—€,€)and g € U,. Moreover, ift, s, and t +s are all in (—¢, €), then

QN o ﬂz = %Ix,. = Qv.q © AF

forall q € U, and thus {¢,} defines a local 1- parameter “group” Q\.&%.%ES&
phisms, or local flow.

The term local refers to the fact that ¢, is defined only on a subset U, C U C R". The
word “group” has been put in quotes because this family of maps does not form a group
in the usual sense. In general (see Problem 1.4 (1)), the maps ¢, are only defined for
small 7, —e < t < ¢; thatis, the integral curve through a point ¢ need only exist for
a small time. Thus, for example, if € = I, then although ¢, ,(¢) exists neither ¢;(g)
nor ¢y 2 o ¢y, need exist; the point is that ¢,,(¢) need not be in the set U » on which
Q:\w is defined.

Example: R" = R, the real line, and v(x) = xd/dx. Thus v has a single component x
at the point with coordinate x. Let U = R. To find ¢, we simply solve the differential
equation

dx

dr 4
to get x(¢) = e’ p, that is, ¢;(p) = ¢’ p. In this example the map ¢; is clearly defined on
all of M! = IR and for all time 7. It can be shown that this is true for any linear vector
field

X with initial condition x(0) = p

dx’ ;
=Y alxt
dr LT
k

defined on all of R",
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Note that if we solved the differential equation dx/d¢ = 1 on the real line with the
origin deleted, that is, on the manifold M' = R — 0, then the solution curve starting at
x = —latr = 0 would exist for all times less than 1 second, but ¢ would not exist;
the solution simply runs “off” the manifold because of the missing point. One might
think that if we avoid dealing with pathologies such as digging out a point from R!,
then our solutions would exist for all time, but as you shall verify in Problem 1. 4
this is not the case. The growth of the vector field can cause a solution curve to “leave”
R! in a finite amount of time.

We have required that the vector field v be differentiable. Uniqueness can be lost if the
field v is only continuous. For example, again on the real line, consider the differential
equation dx /dt = 3x*7. The usual solutions are of the form x(¢) = (¢ — ¢)?, but there
is also the “singular” solution x(7) = 0 identically. This is a reflection of the fact that
x?/3 is not differentiable when x = 0.

1.4b. Vector Fields on Manifolds

If X is a C* vector field on an open subset W of a manifold M" then we can again
recover a 1-parameter local group ¢, of diffeomorphisms for the following reasons. If
W is contained in a single coordinate patch (U, xy;) we can proceed just as in the case
IR" earlier since we can use the local coordinates xy. Suppose that W is not contained
in a single patch. Let p € W be in a coordinate overlap, p € U N V. In U we can solve
the differential equations

as before. In V we solve the equations

J
dxy

vl
T =Xy Xy, ..., xp

Because of the transformation rule (1.6), the right-hand side of this last equation is
M»Eaimxc_x ; the left-hand side is, by the chain rule, ML%i%:Ek /dt. Thus,
because of the transformation rule for a contravariant vector, the two differential equa-
tions say exactly the same thing. Using uniqueness, we may then patch together the U
and the V solutions to give a local solution in W.

Warning: Let / : M" — R be a differentiable function on M”. In elementary
mathematics it is often said that the n-tuple

af af 1"
oxl’ T gan

form the components of a vector field “grad f.” However, if we look at the transfor-
mation properties in U N V, by the chain rule

MU mxc af
dxy,

mu:.\ Z %:\
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and this is not the rule for a contravariant vector. One sees then that a proposed differ-
ential equation for “steepest ascent,” dx /dt =“grad f,” that is,
. o J £

4y h\l inU and dxy = 1@“ inV

dt dxi, dt axi,

would not say the same thing in two overlapping patches, and consequently would not

yield a flow ¢, ! In the next chapter we shall see how to deal with n-tuples that transform
as “grad [

1.4¢. Straightening Flows

Our version of the fundamental theorem on the existence of solutions of differential
equations, as given in the previous section, is not the complete story; see [A, M, R,
theorem 4.1.14] or [A2, chap. 4] for details of the following. The map (p, t) — ¢.(p)
depends smoothly on the initial condition p and on the time of flow ¢. This has the
following consequence. (Since our result will be local, it is no loss of generality to
replace M" by R")) Suppose that the vector field v does not vanish at the point p.
Then of course it doesn’t vanish in some neighborhood of p in M". Let W' ! be a
hypersurface, that is, a submanifold of codimension 1, that passes through p. Assume
that W is transversal to v, that is, the vector field v is not tangent to W.

Figure 1.19

Let u', ..., u""' be local coordinates for W, and let p, be the point on W with
local coordinates 1. Then ¢,(p,) is the point ¢ seconds along the orbit of v through
pu- This point can be described by the n-tuple (u, #). The fundamental theorem states
that if W is sufficiently small and if ¢ is also sufficiently small, then (i, t) can be
used as (curvilinear) coordinates for some n-dimensional neighborhood of p in M”".
To see this we shall apply the inverse function theorem. We thus consider the map
L: W' x (—e,€) — M" given by L(u, t) = ¢,(p,). We compute the differential
of this map at the origin u = 0 of the coordinates on W"~!. Then by the geometric
meaning of L,, and since ¢o(p) = p

: 0 9 : 0Dw.0....0) o
Lol — ) = — O, ..., 0) g = ———= = -
S\ Ou! du Lol o ou |, Ou!
Likewise L,(8/0u')y = 8/0u’, fori = 1,...,n — 1. Finally
, d
L.(v) = —d(po) = v
at

Thus L, is the identity linear transformation, and by Corollary (1.16) we may use

u', ..., u""" t as local coordinates for M" near p.
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It is then clear that in these new local coordinaies near p, the flow defined by the
vector field vis simply ¢ : (1, £) — (u, s-1) and the vector field v in terms of & /Ou',
., 0/0u"", 80t is simply v = 8/81. We have “straightened out” the flow!

Figure 1.20

This says that near a nonsingular point of v, that is, a point where v = 0, coordinates
|

h

u', ..., u" can be introduced such that the original system of differential equations
dx'/di = vl(x), ..., dx"/dt = v"(x) becomes
du' 0 du! 0 du" | (120)
R | dr A

Thus all flows near a nonsingular point are qualitatively the same! In a sense this
result is of theoretical interest only, for in order to introduce the new coordinates u
one must solve the original system of differential equations. The theoretical interest
is, however, considerable. For example, u' = ¢y, ..., u""" = ¢,_,, are (n — 1) “first
integrals,” that is, constants of the motion, for the system (1.20). We conclude that
near any nonsingular point of any system there are (n — 1) first integrals, u'(x) =
el w7 (x) = ¢,y (but of course, we might have to solve the original system to
write down explicitly the functions u/ in terms of the x’s).

Problems

1.4(1) Consider the quadratic vector field problem on R, v(x) = x2d/dx. You must
solve the differential equation
dx P
[%m. = X
Consider, as in the statement of the fundamental theorem, the case when U, is
the set 1/2 < x < 3/2. Find the largest ¢ so that @ : Up x (—¢,¢€) - R is defined;
that is, find the largest ¢ for which the integral curve ¢:(¢) will be defined for all
1/2 < q < 3/2.

1.4(2) Inthe complex plane we can consider the differential equations dz/df = 1, where
t is real. The integral curves are of course lines parallel to the real axis.This
can also be considered a differential equation on the z paich of the Riemann
sphere of Section 1.2d. Extend this differential equation to the entire sphere by
writing out the equivalent equation in the w patch. Write out the general solution
w = w(f) in the neighborhood of w = 0, and draw in particular the solutions
starting at /, &1, and —/.

and x(0) =p






CHAPTER 2

Tensors and Exterior Forms

IN Section 1.4b we considered the n-tuple of partial derivatives of a single function
3 F/9x’ and we noticed that this n-tuple does not transform in the same way as the n-
tuple of components of a vector. These components 8 F/dx/ transform as a new type of
“vector.” In this chapter we shall talk of the general notion of “tensor” that will include
both notions of vector and a whole class of objects characterized by a transformation
law generalizing 1.6. We shall, however, strive to define these objects and operations
on them “intrinsically,” that is, in a basis-free fashion. We shall also be very careful in
our use of sub- and superscripts when we express components in terms of bases; the
notation is designed to help us recognize intrinsic quantities when they are presented
in component form and to help prevent us from making blatant errors.

2.1. Covectors and Riemannian Metrics
How do we find the curves of steepest ascent?

2.1a. Linear Functionals and the Dual Space

Let E be areal vector space. Although for some purposes E may be infinite-dimensional,
we are mainly concerned with the finite-dimensional case. Although R”, as the space

of real n-tuples (x!, ..., x"), comes equipped with a distinguished basis (1, 0,0, . ..,
0)", ..., the general n-dimensional vector space E has no basis prescribed.
Choose a basis ey, . .., e, for the n-dimensional space E. Then a vector v € E has

a unique expansion
<”MUG\C\“ m C\.@\,
Y J

where the n real numbers v/ are the components of v with respect to the given basis. For
algebraic purposes, we prefer the first presentation, where we have put the “scalars”
v/ to the right of the basis elements. We do this for several reasons, but mainly so
that we can use matrix notation, as we shall see in the next paragraph. When dealing

37
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with calculus, however, this notation is awkward. For example, in R” (thought of as a
manifold), we can write the standard basis at the origin as e; = 8/8x/ (as in Section
1.3¢); then our favored presentation would say v = 3, 0/8x/ v/, making it appear,
incorrectly, that we are differentiating the components v/. We shall employ the bold 8 to
remind us that we are not differentiating the components in this expression. Sometimes
o e
we will simply use the traditional Ni. vie;.
We shall use the matrices
e=(e,,....,e,) and v= @' .., )

The first is a symbolic row matrix since each entry is a vector rather than a scalar.
Note that in the matrix v we are preserving the traditional notation of representing
the components of a vector by a column matrix. We can then write our preferred
representation as a matrix product

v=euv 2.1)

where visa I x I matrix. As usual, we see that the n-dimensional vector space E, witha
choice of basis, is isomorphic to R" under the correspondence v — (v', ..., v") e R",
but that this isomorphism is “unnatural,” that is, dependent on the choice of basis.

Definition: A (real) linear functional o on £ is a real-valued linear function «,
that is, a linear transformation « : £ - R from E to the [-dimensional vector
space R. Thus

alav + bw) = aa(v) + ba(w)

for real numbers a, b, and vectors v, w.

By induction, we have, for any basis e

o Yoev’) =Y ale)v! 2.2)

This is simply of the form ) a; v/ (where a; = a(e;)), and this is a linear function of

the components of v. Clearly if {a,} are any real numbers, then v > Y a;v/ defines a

linear functional on all of E. Thus, after one has picked a basis, the most general linear
Sunctional on the finite-dimensional vector space E is of the form

o(v) = M a;v’ where a; 1= afe;) (2.3)

Warning: A linear functional « on F is not itself a member of E; that is, « is not

to be thought of as a vector in E. This is especially obvious in infinite-dimensional

cases. For example, let E be the vector space of all continuous real-valued functions

f R — R of areal variable 1. The Dirac functional & is the linear functional on E
defined by

So(f) = f(0)

You should convince yourself that E is a vector space and that &y is a linear functional
on E. No one would confuse 8y, the Dirac § “function,” with a continuous function,
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that is, with an element of E. In fact §, is not a function on R at all. Where, then, do the
linear functionals live?

Definition: The collection of all linear functionals o on a vector space E form a
new vector space £*, the dual space to £, under the operations

(@ + B)(¥) = a(v) + B(v), a, B e E*, ve E
(co)(v) 1= ca(v), ceR
We shall see in a moment that if E is n-dimensional, then so is E*.
If e, ..., e, is a basis of E, we define the dual basis o', ..., 0" of E* by first
putting
o'(e;) =8,

and then “extending o by linearity,” that is,

i YA . oy — N “8f o i
o M e;v | = M o' (e’ = w 8 =vw
i J j

Thus o’ is the linear functional that reads off the i"" component (with respect to the
basis €) of each vector v.

Let us verify that the o’s do form a basis. To show linear independence, assume that a
linear combination 3" a ;o is the 0 functional. Then 0 = S ajol(e) =3 ja;8l =
ay shows that all the coefficients a; vanish, as desired. To show that the o’s span E*,
we note that if ® € E* then

a(v) = QAMm.\_c\v = MUQA&.?\
Dae)a’ ) = (Y ate)ol )

Thus the two linear functionals o and 3" «(e o/ must be the same!

a=Y ale)o’ 2.4)
J

I

This very important equation shows that the o”’s do form a basis of E*.

In (2.3) we introduced the n-tuple a j = a(e;) for each @ € E*. From (2.4) we see
o =) a;o’.a; defines the j* component of «.

If we introduce the matrices

o= (' ...,oMm" and a=1{(ay,...,a,)

then we can write

Q= Ma.\.q\ = ao (2.5)
i

Note that the components of a linear functional are written as a row matrix a.
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Under a change of local coordinates the chain rule yields

) mkt .
Qxf\ = M P u— N\RQ,\ ANO
A QXQ,\
J
and for a general covector 3, a”;dxy' = i a’i(dxy'/dxy’) dxy’ must be the sam

asy; aV ;dxy’. We then must have

mkf\ ,
Q 4‘!. <. ;
f; MU "t e @.5
But MU\ A@.H«\N\QRQ.JAmkq\.\mka\av = ®R<~,\mk\.<» = %m» shows that mw.va\mka\ is the
inverse matrix to dxy/dxy. Equation (2.10) is, in matrix form, a¥ = a" (9xy/dxy)
and this yields a" = a¥ (9xy/dxy), or

a’i =3 a¥; [ L @.11

This is the transformation rule for the components of a covariant vector, and shoulc
be compared with (1.6). In the notation of (1.7) we may write

a" =a" cyy =a" ¢y, (2.12
Warning: Equation (1.6) tells us how the components of a single contravarian
vector transform under a change of coordinates. Equation (2.11), likewise, tells u
how the components of a single 1-form « transform under a change of coordinates
This should be compared with (2.9). This latter tells us how the n-coordinate 1-form:
dxy', ..., dxy" are related to the n-coordinate 1-forms dxy !, ..., dxy”. In a sense we
could say that the n-tuple of covariant vectors (dx', ..., dx") transforms as do th
components of a single contravariant vector. We shall never use this terminology.
See Problem 2.1 (1) at this time.

2.1¢. Scalar Products in Linear Algebra

Let E be an n-dimensional vector space with a given inner (or scalar) product (, )
Thus, for each pair of vectors v, w of E, (v, w) is areal number, it is linear in each entrs
when the other is held fixed (i.e., it is bilinear), and it is symmetric (v, w) = (w, v)
Furthermore (, ) is nondegenerate in the sense that if (v, w) = 0 for all w then v = 0
that is, the only vector “orthogonal” to every vector is the zero vector. If, further
| v %= (v,v) is positive when v # 0, we say that the inner product is positive
definite, but to accommodate relativity we shall nor always demand this.
If e is a basis of E, then we may write v = ev and w = ew. Then

v,w) =) e', Y euw)
i J
= Muc;m: MU&.SJ = MUMUQ.?? e;)w’
i J i i



COVECTORS AND RIEMANNIAN METRICS 43

If we define the matrix G = (g;;) with entries
gij = (e;, ;)
then
(v, w) = > g wl 2.13)
ij

or
(v, w) = vGw

The matrix (g;;) is briefly called the metric tensor. This nomenclature will be explained
in Section 2.3.

Note that when e is an orthonormal basis, that is, when 8ij = w is the identity
matrix (and this can happen only if the inner product is positive definite), then (v, w) =
> v/ w’ takes the usual “euclidean” form. If one restricted oneself to the use of
orthonormal bases, one would never have to introduce the matrix (g;;), and this is what
is done in elementary linear algebra.

By hypothesis, (v, w) is a linear function of w when v is held fixed. Thus if v € E,
the function v defined by

v(w) = (v, w) (2.14)

is a linear functional, v € E*. Thus to each vector v in the inner product space E we
may associate a covector v; we shall call v the covariant version of the vector v. In
terms of any basis e of £ and the dual basis o of E* we have from (2.4)

Vo= MU c\.q\ = MU cAm.\.vq\,
j

J

=Y (v,e;)0”

Jj

= MAM m:&.u @.\.vef\.

J
= MUAM cmm:.vo.,\.
i

Thus the covariant version of the vector v has components v; = >, v'g;; and it is
traditional in “tensor analysis”™ to use the same letter v rather than v. Thus we write
for the components of the covariant version

v =) vlg; HMU%.: V! (2.15)

since g;; = g;;. The subscript j in v; tells us that we are dealing with the covariant
version; in tensor analysis one says that we have “lowered the upper index i, making
ita j, by means of the metric tensor g;;.”” We shall also call the (v i), with abuse of
language, the covariant components of the contravariant vector v,

Note that if e is an orthonormal basis then v; = v/.
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In our finite-dimensional inner product space E, every linear functional v is t
covariant version of some vector v. Given v = 3 ;vjo’ we shall find v such tt
v(w) = (v, w) for all w. For this we need only solve (2.15) for v' in terms of the giv
v;. Since G = (g;;) is assumed nondegenerate, the inverse matrix G~' must exist and
again symmetric. We shall denote the entries of this inverse matrix by the same lette
g but written with superscripts

G =(g")
Then from (2.15) we have
vi=Y gy, 2.1
J

yields the contravariant version v of the covector v = ¥ j vjol. Again we call (v')
contravariant components of the covector v,

Let us now compare the contravariant and covariant components of a vector v in
simple case. First of all, we have immediately

Vj == CAO\.V = A<, w\.v ANM\
and then v’ = 37 ¢'v; = 3. g (v, e;). Thus although we always have v = 5", v’ ¢
- f J J 8 J i
V= MU AMU%:,?, m\_vvmm
i J

replaces the euclidean v =, (v, ¢;)e; that holds when the basis is orthonormal. Cor
sider, for instance, the plane R?, where we use a basis e that consists of unir but n
orthogonal vectors.

Ll 31

Figure 2.1

We must make some final remarks about linear functionals. It is important to realiz
that given an n-dimensional vector space E, whether or not it has an inner produc
one can always construct the dual vector space E*, and the construction has nothin;
to do with a basis in E. If a basis e is picked for E, then the dual basis o for E* i
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determined. There is then an isomorphism, that is, a 1:1 correspondence between E*
and E given by 3" a;0/ — 3" aje;, but this isomorphism is said to be “unnatural”
since if we change the basis in E the correspondence will change. We shall never use
this correspondence. Suppose now that an inner product has been introduced into E.
As we have seen, there is another correspondence E* — E that is independent of
basis; namely to v € E* we associate the unique vector v such that v(w) = (v, w); we
may write v == (v, «). In terms of a basis we are associating to v = 3" v;0’ the vector
- v'e;. Then we know that each o can be represented as 0! = (f;, +); that is, there
is a unique vector f; such that o'(w) = (f;, w) for all w € E. Then f ={f;} is a new
basis of the original vector space E, sometimes called the basis of E dual to e, and we
have (f;, ;) = & Although this new basis is used in applied mathematics, we shall
not do so, for there is a very powerful calculus that has been developed for covectors,
a calculus that cannot be applied to vectors!

2.1d. Riemannian Manifolds and the Gradient Vector

A Riemannian metric on a manifold M” assi gns, in a differentiable fashion, a positive
definite inner product (, ) in each tangent space M »- I (. ) is only nondegenerate (i.e.,
(u, v) = 0 for all v only if u = 0) rather than positive definite, then we shall call the
resulting structure on M" a pseudo-Riemannian metric. A manifold with a (pseudo-)
Riemannian metric is called a (pseudo-) Riemannian manifold.

In terms of a coordinate basis ¢; = 8; := 8/8x' we then have the differentiable
matrices (the “metric tensor™)

) 5] 1]
gij{X) = a0 :
8is Oxt’ OxJ
as in (2.13). In an overlap U N V we have
v (9 9 (2.18)
8 =\ oyt By .
- wkm\ U m\f\w U
fceen ﬁwh s - @
ANL muﬁ\ ! M m.\f\x ! v
oxy” dxy*
~.<. o !.|Ql( v VQ

ry

This is the transformation rule for the components of the metric tensor.

Definition: If M" is a (pseudo-) Riemannian manifold and fis a differentiable
function, the gradient vector

grad f =V f
is the contravariant vector associated to the covector df

df(w) = (Vf,w) (2.19)
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In coordinates

af
ox/

(V) = g"

Note then that || V f [|>:= (V [, V) = df(Vf) = 3,,(3f/9x")g" (8f/dx/). We
see that df and V f will have the same components if the metric is “euclidean,” that
is, if the coordinates are such that g" = &}.

Example (special relativity): Minkowski space is, as we shall see in Chapter 7, IR* but
endowed with the pseudo-Riemannian metric given in the so-called inertial coordinates

r=x" x=x', y=x% z=ux%by
o o e .
%C,H i@f.m; v@|.x|x; =1 _m;if\]_uw: or 3
= —¢? ifi=j=0, where c¢ is the speed of light
' = otherwise

that is, (g;;) is the 4 x 4 diagonal matrix
(gi;) = diag(—c?, 1,1, 1)
Then

. 3
of - af .

df = { = |dt =} dx!
f ot +m dax/ *

1s classically written in terms of components

of of of 9f

Q ~ "y 3 3
! at ox Jy 9z
but
. 3 .
X L [af : af
Vf=—— o —— 1 8;
F==2\u ]rm axi)

X g T
Vi~ ey o S
¢* Jdt dx dy 9z
(It should be mentioned that the famous Lorentz transformations in general are simply
the changes of coordinates in R* that leave the origin fixed and preserve the form —c?t* +
x% + 2 + 22, just as orthogonal transformations in R® are those transformations that

preserve x% -+ y? + 721

2.1e. Curves of Steepest Ascent

r

The gradient vector in a Riemannian manifold M" has much the same meaning as in
euclidean space. If v is a unit vector at p € M, then the derivative of f with respect to v
isv(f) = Y (af/3x/)v/ = df(v) = (V f, v). Then Schwarz’s inequality (which holds
for a positive definite inner product), [v(f)| = VAWV <I VSl vl=lI VS,
shows that f has a maximum rate of change in the direction of V f. If f(p) = a, then
the level set of f through p is the subset defined by

M""a) = {x € M"| f(x) = a)
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A good example to keep in mind is the torus of Figure 1.18. If df does not vanish
at p then M""!(a) is a submanifold in a neighborhood of p. f x = x(¢) is a curve
in this level set through p then its velocity vector there, dx/dt, is “annihilated” by
df; df(dx/dt) = 0 since f(x(t)) is constant. We are tempted to say that df is
“orthogonal” to the tangent space to M"~'(a) at p, but this makes no sense since d f
is not a vector. Its contravariant version V f is, however, orthogonal to this tangent
space since (V f, dx /dt) = df (dx/dt) = 0 for all tangents to M"~!(a) at p. We say
that ¥V f is orthogonal to the level sets.

Finally recall that we showed in paragraph 1.4b that one does not get a well-defined
flow by considering the local differential equations dx'/dt = 3f/dx'; one simply
cannot equate a contravariant vector dx/dt with a covariant vector df. However it
makes good sense to write dx /dt = V f; that s, the “correct” differential equations are

dx' o df
Bt yt :
dt Mm ox/

The integral curves are then tangent to V f, and so are orthogonal to the level sets f =
constant. How does f* change along one of these “curves of steepest ascent”? Well,
dffdt = df(dx/dt) = (V f, V f). Note then that if we solve instead the differential
equations

m\.a 4\
dt |V f|?

(i.e., we move along the same curves of steepest ascent but at a different speed) then
df/dt = 1. The resulting flow has then the property that in time t it takes the level set
J = ainto the level set f = a + t. Of course this result need only be true locally
and for small 7 (see 1.4a). Such a motion of level sets into level sets is called a Morse
deformation. For more on such matters see [M, chap. 1].

Problems

2.1(1) Ifvis avector and « is a covector, compute directly in coordinates that vL alvl, =
> a; 5\\ What happens if w is another vector and one considers 3" v s\s

2.1(2) Let x, y, and z be the usual cartesian coordinates in R® and let v = r, 12 =0
(colatitude), and v® = ¢ be spherical coordinates.

(i) Compute the metric tensor components for the spherical coordinates

a8 &

gro i= Q12 = a7 50 etc.

(Note: Don't fiddle with matrices; just use the chain rule 8/8r =
(8x/3r8/8X + )

(i) Compute the coefficients (v £)/ in

Vf=(V 3P| +- 239! +(VH?. ms
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(iii) Verify that 8/8r, 8,80, and 8/8¢ are orthogonal, but that not all are unit
vectors. Define the unit vectors m\\. = (8/8uh)/ || 8/0u’! |} and write ¥V fin
terms of this orthonormal set

Vi=He+ne+ e,

These new components of grad f are the usual ones found in all physics
books (they are called the physical components); but we shall have little
use for such components; df, as given by the simple expression df =
(df/ar) dr + - .-, frequently has all the information one needs!

2.2. The Tangent Bundle

What is the space of velocity vectors to the configuration space of a dynamical system?
2.2a. The Tangent Bundle

The tangent bundle, 7M", to a differentiable manifold M" is, by definition, the
collection of all tangent vectors at all points of M.

Thus a “point” in this new space consists of a pair (p, v), where p is apointof M and v is
a tangent vector to M at the point p, thatis, v € M. Introduce local coordinates in 7'M
as follows. Let (p, v) € TM". p lies in some local coordinate system U, x!, ..., x". At
p we have the coordinate basis (8; = 8/8x") for M". We may then write v =3, v' 8;.
Then (p, v) is completely described by the 2n-tuple of real numbers

xNp), X (p), vt "

The 2n-tuple (x,v) represents the vector Y ; v/ at p. In this manner we associate
2n local coordinates to each tangent vector to M" that is based in the coordinate patch
(U, x). Note that the first n-coordinates, the x’s, take their values in a portion U of R",
whereas the second set, the v’s, fill out an entire R" since there are no restrictions on
the components of a vector. This 2n-dimensional coordinate patch is then of the form
(U c R") x R" ¢ R*™. Suppose now that the point p also lies in the coordinate patch
(U7, x"). Then the same point (p, v) would be described by the new 2n-tuple

H

| 1
x(p), .., x"(p),v, ...
where
7i

= X (2.20)

and

oxJ

. ax’t _
- M .{.Ml A\QVC\
i

We see then that T M" is a 2n-dimensional differentiable manifold!
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We have a mapping

w:TM—~ M w(p,v)=p

called projection that assigns to a vector tangent to M the point in M at which the
vector sits. In local coordinates,

w(x', ..., X ,c_,..:c:vﬂQ_,..:azv

It is clearly differentiable.

fiber 7! (x)

™ \

=/= I 7 T
" d \" point with local
“ L/ “ coordinates (x,v)
1 \\ I
] v "
]
v “ ) “ 0 section
ol Y
1 ]
= O 1 1 \
I i
] i
I i
i 1
7

x v
L A -
1\ -© 7 =M
e U =

Figure 2.2

We have drawn a schematic diagram of the tangent bundle T M. 7~ (x) represents
all vectors tangent to M at x, and so 7 ~'(x) = M" is a copy of the vector space R”",
It is called “the fiber over x.” Our picture makes it seem that 7'M is the product space
M x R, but this is not so! Although we do have a global projection w : TM —> M,
there is no projectionmap ©’ . TM — R".

A point in TM represents a tangent vector to M at a point p but there is no way to
read off the components of this vector until a coordinate system (or basis for M ») has
been designated at the point at which the vector is based!

Locally of course we may choose such a projection; if the point is in 7 ~'(U) then by
using the coordinates in U we may read off the components of the vector. Since 7~ (U)
is topologically U x R" we say that the tangent bundle 7'M is locally a product.
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%:

0 section

section v

v = 0 here

Figure 2.3

A vector field v on M clearly assigns to each point x in M a point v(x) in 7~ (x) C
T M that “lies over x.” Thus a vector field can be considered asamapv : M — T M
such that 77 ov is the identity map of M into M. As suchitis called a (cross) section of the
tangent bundle. In a patch 77 ~! (U) it is described by v' = v'(x', ..., x"") and the image
v(M) is then an n-dimensional submanifold of the 2n-dimensional manifold TM. A
special section, the 0 section (corresponding to the identically 0 vector field), alway:
exists. Although different coordinate systems will yield perhaps different component:
for a given vector, they will all agree that the O-vector will have all components 0.

Example: In mechanics, the configuration of a dynamical system with n degrees o
freedom is usually described as a point in an n-dimensional manifold, the configuration
space. The coordinates x are usually called Qﬁ ...,q", the “generalized coordinates.
For example, if we are considering the motion of two mass points on the real line
M? = R x R with coordinates ¢', g* (one for each particle). The configuration space
need not be euclidean space. For the planar double pendulum of paragraph 1.2b (v)
the configuration space is M? = §! x §' = T2, For the spatial single pendulum M’
is the 2-sphere S? (with center at the pin). A tangent vector to the configuration spacs
M" is thought of, in mechanics, as a velocity vector; its components with respect to th
coordinates ¢ are written gy, ..., g, rather than v', ..., v". These are the generalizec
velocities. Thus T'M is the space of all generalized velocities, but there is no standarc
name for this space in mechanics (it is not the phase space, to be considered shortly).

2.2b. The Unit Tangent Bundle

If M" is a Riemannian manifold (see 2.1d) then we may consider, in addition to T M
the space of all unir tangent vectors to M". Thus in T M we may restrict ourselves t
the subset TyM of points (x, v) such that || v ||>= 1. If we are in the coordinate patct
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(x', ..., x", v, ..., v") of T M, then this unit tangent bundle is locally defined by
ToM" > gy (v'v! =
i
In other words, we are looking at the locus in 7' M defined locally by putting the single
function f(x,v) = M:. 8ij (x)v'v/ equal to a constant. The local coordinates in T M
are (x, v). Note, using g;; = g;;, that

of - .
=23 gy (v’
J

Since det(g;;) # 0, we conclude that not all 3f/dv* can vanish on the subset v s 0,
and thus ToM" is a (2n — 1)-dimensional submanifold of T M"! In particular TyM is
itself a manifold.

In the following figure, vo = v/ || v ||.

v

\
W,

ToM

0 section

=

o o M
v

Figure 2.4

Example: T,S? is the space of unit vectors tangent to the unit 2-sphere in R,

€3

€

Figure 2.5

Let v = f, be a unit tangent vector to the unit sphere 2 ¢ R It is based at some point
on §2, described by a unit vector f. Using the right-hand rule we may put f3 = f; x £,.
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It is clear that by this association, there is a 1:1 correspondence between unit tange
vectors v to S° (i.e., to a point in T55%) and such orthonormal triples £y, f;, £5. Transla
these orthonormal vectors to the origin of R3 and compare them with a fixed right-hand
orthonormal basis e of R, Then f; = e iﬁ ; for a unique rotation matrix R € SO(Z
In this way we have set up a 1:1 correspondence TpS? — SO(3). It also seems evide
that the topology of TpS? is the same as that of SO (3), meaning roughly that near!
unit vectors tangent to S? will correspond to nearby rotation matrices; precisely, v
mean that Tp5? — SO3)is a diffeomorphism. We have seen in 1.2b(vii) that SO (3)
topologically projective space.

The unit tangent bundle TyS® to the 2-sphere is topologically the 3-dimensional real
projective 3-space TyS* ~ RP?> ~ SO(3).

2.3. The Cotangent Bundle and Phase Space

What is phase space?

2.3a. The Cotangent Bundle

The cotangent bundle to M" is by definition the space T*M" of all covectors at «
points of M. A pointin 7*M is a pair (x, &) where « is a covector at the point x. If x
in a coordinate patch U, x!, ..., x", then dx', ..., dx", gives a basis for the cotange
space M*, and o can be expressed as « = _ a;(x)dx’. Then (x, «) is complete
described by the 2n-tuple

2N, LX), (), L a4 (x)

The 2n-tuple (x, a) represents the covector y . a; dx' at the point x. If the point p al;

lies in the coordinate patch U’, "', ..., x™", then
=G LX)
and 2.2
dx/
A ;
a; = Ml\ mw:\xm A\«vQ.\

J
T*M" is again a 2n-dimensional manifold. We shall see shortly that the phase space :
mechanics is the cotangent bundle to the configuration space.

2.3b. The Pull-Back of a Covector

Recall that the differential ¢, of asmoothmap ¢ : M" — V" has as matrix the Jacobia

matrix dy/dx in terms of local coordinates (x!, ..., x") near x and (', ..., v nes
y = ¢ (x). Thus, in terms of the coordinate bases
o ayk\ 8 ,
Ox/ oxi ) By

R
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Note that if we think of vectors as differential operators, then for a function f near y

VNS M AT
o:7) D=2 (57 (oyr

simply says, “Apply the QR:.: rule to lﬁ composite function [ o ¢, that is, Flyx)nr

bx

Definition: Let ¢ : M" — V' be a smooth map of manifolds and let ¢ (x) = y.
Let ¢. : M, — V, be the differential of ¢. The pull-back ¢* is the linear
transformation taking covectors at Yy into covectors at x, ¢* : V(y)* — M(x)*,
defined by

P*(BYV) = B(h(v))

for all covectors 8 at y and vectors v at x. W

Let (x') and (y®) be local coordinates near x and y, respectively. The bases for the
tangent vector spaces M, and V, are given by (8/8x/ ) and (8/0y*). Then

o , - o _
iﬁwug B 57 Jdx .,M\w Doy )dx
ayt\ o
= B = jdx’/
- wv\k @
= B == Jdx/
T ax/ p Oyk @
ayk , &
HMU\; —— ldx/, érﬁ‘omﬂm\;“@
, dx/
JjR R
Thus
* mv\w j
" (B) = by )dx! (2.24)
JR %.\«\

In terms of matrices, the differential ¢, is given by the Jacobian matrix 9y /0x acting
on columns v at x from the left, whereas the pull-back ¢* is given by the same matrix
acting on rows b at y from the right. (If we had insisted on writing covectors also as
columns, then ¢* acting on such columns from the left would be given by the transpose
of the Jacobian matrix.)

¢*(dy®) is given immediately from (2.24); since dy® = 3", 85 pd yR

* SN mv\,w 7
¢*(dy®) = MU = Jdx (2.25)
This is again simply the chain rule applied to the composition yS o ¢!

Warning: Let ¢ : M" — V" and let v be a vector field on M. It may very well
be that there are two distinct points x and x’ that get mapped by ¢ to the same point
Y = ¢(x) = ¢(x’). Usually we shall have ¢ (v(x)) # ¢.(v(x")) since the field v need
have no relation to the map ¢. In other words, ¢, (v) does not yield a well defined vector
field on V (does one pick ¢, (v(x)) or ¢, (v(x")) at y?). ¢, does not take vector Jields
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into vector fields. (There is an exception if n = r and ¢ is 1:1.) On the other hand, if
B is a covector field on V', then ¢*B is always a well-defined covector field on M";
¢*(B(y)) yields a definite covector at each point x such that ¢ (x) = y. As we shall
see, this fact makes covector fields easier to deal with than vector fields.

See Problem 2.3 (1) at this time.

2.3¢c. The Phase Space in Mechanics

In Chapter 4 we shall study Hamiltonian dynamics in a more systematic fashion. For the
present we wish merely to draw attention to certain basic aspects that seem mysterious
when treated in most physics texts, largely because they draw no distinction there
between vectors and covectors.

Let M" be the configuration space of a dynamical system and letg', ..., ¢" be local
generalized coordinates. For simplicity, we shall restrict ourselves to time-independent
Lagrangians. The Lagrangian L is then a function of the generalized coordinates ¢
and the generalized velocities ¢, L = L(q, ¢). It is important to realize that ¢ and ¢
are 2n-independent coordinates. (Of course if we consider a specific path ¢ = ¢(¢) in
configuration space then the Lagrangian along this evolution of the system is computed
by putting ¢ = dg/dt.) Thus the Lagrangian L is to be considered as a function on
the space of generalized velocities, that is, L is a real-valued function on the tangent
bundle to M,

L:TM" - R

We shall be concerned here with the transition from the Lagrangian to the Hamiltonian
formulation of dynamics. Hamilton was led to define the functions
oL

pi(g.q) = b
We shall only be interested in the case when det(dp;/8g/) # 0. In many books (2.26)
is looked upon merely as a change of coordinates in T'M; that is, one switches from
coordinates g, ¢, to g, p. Although this is technically acceptable, it has the disadvantage
that the p’s do not have the direct geometrical significance that the coordinates ¢ had.
Under a change of coordinates, say from ¢y to gy in configuration space, there is an
associated change in coordinates in T M

(2.26)

qv = qv(qu)
i dqi .
qh =\ 5.0 ) , (227)
i Q<
This is the meaning of the tangent bundle! Let us see now how the p’s transform.
9L AL\ [ dq} aL \ /3g}
NVW\ = e MU S du -+ !mwlm‘

aqy 7 EY AN v dqi, ) \ 84y

However, gy does not depend on ¢ ; likewise g, does not depend on gy, and therefore
the first term in this sum vanishes. Also, from (2.27),

My 2y (2.28)
aqy dqy
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=50 pu (S 2.29
I \, P dah (2.29)

and so the p’s represent then not the components of a vector on the configuration
space M" but rather a covector. The q’s and p’s then are to be thought of not as local
coordinates in the tangent bundle but as coordinates for the cotangent bundle. Equation
(2.26) is then to be considered not as a change of coordinates in 7'M but rather as the
local description of a map

’E TM" — T*M" AN&OV

from the tangent bundle to the cotangent bundle. We shall frequently call (¢!, ..., ¢",
Pi, -+ » Pn) the local coordinates for 7*M" (even when we are not dealing with me-
chanics). This space T*M of covectors to the configuration space is called in mechanics
the phase space of the dynamical system.

Recall that there is no natural way to identify vectors on a manifold M" with co-
vectors on M”. We have managed to make such an identification, MU q’9/3q) —
Mu (0L/3¢7)dq’, by introducing an extra structure, a Lagrangian ?:o:o: TM and
wgi exist as soon as a manifold M is given. We may (locally) identify these spaces by
giving a Lagrangian function, but of course the identification changes with a change of
L, that is, a change of “dynamics.”

Whereas the ¢’s of 7'M are called generalized velocities, the p’s are called gener-
alized momenta. This terminology is suggested by the following situation. The La-
grangian is frequently of the form

Lig,q) =T(q,q) — V(q)

where T is the kinetic energy and V the potential energy. V is usually independent of
¢ and T is frequently a positive definite symmetric quadratic form in the velocities

| ,
T(q. @) = 5> gilg)q’q" (2.31)
jk

For example, in the case of two masses m, and m, moving in one dimension, M
R TM = R*, and

1 I 22
T = ::Sv + ENSV

and the “mass matrix” (g;;) is the diagonal matrix diag(m,, m,).

In (2.31) we have generalized this simple case, allowing the “mass” terms to depend
on the positions. For example, for a single particle of mass m moving in the plane, we
have, using cartesian coordinates, T = (1/2)m[x? + ], but if polar coordinates are
used we have T = (1/2)m[i” + xwmm_ with the resulting mass matrix diag(m, mr?). In
the general case,

alL  aT

PH‘;HI}HJ%#SE\ (2.32)
QQN @m\ N\k Y
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Thus, if we think of 27 as defining a Riemannian metric on the configuration space M

(q.4) =Y &i@q'q’

L

then the kinetic energy represents half the length squared of the velocity vector, an
the momentum p is by (2.32) simply the covariant version of the velocity vector q. 1
the case of the two masses on R we have

FHS_Q_ and SHSMQ.N

are indeed what everyone calls the momenta of the two particles.

The tangent and cotangent bundles, 7'M and T*M, exist for any manifold M, ir
dependent of mechanics. They are distinct geometric objects. If, however, M is a Ri
mannian manifold, we may define a diffeomorphism TM”" — T*M" that sends tt
coordinate patch (¢, ¢) to the coordinate patch (g, p) by

pi = MU m:m\
J
with inverse
¢ = VL g" Pj
: J

We did just this in mechanics, where the metric tensor was chosen to be that define
by the kinetic energy quadratic form.

2.3d. The Poincaré 1-Form

Since T M and T*M are diffeomorphic, it might seem that there is no particular reasc
for introducing the more abstract 7* M, but this is not so. There are certain geometric
objects that live naturally on T*M, not TM. Of course these objects can be broug]
back to 7'M by means of our identifications, but this is not only frequently awkwar
it would also depend, say, on the specific Lagrangian or metric tensor employed.

Recall that “1-form” is simply another name for covector. We shall show, wi
Poincaré, that there is a well-defined 1-form field on every cotangent bundle 773
This will be a linear functional defined on each tangent vector to the 2n-dimension
manifold T*M", not M.

Theorem (2.33): There is a globally defined 1-form on every cotangent bundle
T*M?", the Poincaré 1-form X. In local coordinates (q, p) it is given by

r=) pidg'

(Note that the most general 1-form on T*M is locally of the form 3, a;(q, p)dq’
> bi(q, p)dp;, and also note that the expression given for A cannot be considered
1-form on the manifold M since p; is not a function on M!)
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prOOF: We need only show that A is well defined on an overlap of local coordi-
nate patches of T*M. Let (¢', p’) be a second patch. We may restrict ourselves to
coordinate changes of the form (2.21), for that is how the cotangent bundle was
defined. Then

; oq"\ . (94"
dq" = —— tdg’ + { — — ldp;
MU g/ )" Nap; )

But from (2.21), ¢’ is independent of p, and the second sum vanishes. Thus

MUNV\BE:_ = MUF,\M mwmm dg’ = MUS@E\, 0
i j J

J dq’

{

There is a simple intrinsic definition of the form A, that is, a definition not using
coordinates. Let A be a point in 7*M; we shall define the 1-form A at A. A represents a
I-formo atapointx € M. Letw : T*M" — M" be the projection that takes a point A
in "M, to the point x at which the form « is located. Then the pull-back 7 *« defines
a I-form at each point of 7 ! (x), in particular at A. A at A is precisely this form 7 *a!

Let us check that these two definitions are indeed the same. In terms of local coor-
dinates (¢) for M and (g, p) for T*M the map n is simply 7 (¢, p) = (). The point
A with local coordinates (g, p) represents the form 2P ;dq’ at the point g in M.
Compute the pull-back (i.e., use the chain rule)

¥ MU.S&Q_. HMUFSLQ@J

_ dg j aq'
EMSM M@l\i dq’ + - |dp;

j

= MF M&QS.\ = MJ\.S&Q‘ =i U
i i

1

As we shall see when we discuss mechanics, the presence of the Poincaré I-form field
on T* M and the capability of pulling back 1-form fields under mappings endow T*M
with a powerful tool that is not available on T M.

Problems

2.3(1) Let F: M" — W' and G: W' — VS be smooth maps. Let x, y, and z be local
coordinates near p e M, F(p) ¢ W, and G(F(p)) € V, respectively. We may
consider the composite map Go F: M — V.

(i) Show, by using bases 8/8x, 8/8y, and 8/8z, that
(GoF)y=Gso Fy
(ii) Show, by using bases dx, dy, and dz, that
(Go FY* = F*o G*
2.3(2) Consider the tangent bundle to a manifold M.
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(i) Show that under a change of coordinates in M, 8/8q depends on both
8/0qg and 8/9¢ .
(i) Is the locally defined vector field MU\_ glaroq’ well defined on all of TM?
(iii) 1s 37, gla/6g’ well defined?
(iv) If any of the above in (i), (iii) is well defined, can you produce an intrinsic
definition?

2.4. Tensors

How does one construct a field strength from a vector potential?

2.4a. Covariant Tensors

In this paragraph we shall again be concerned with linear algebra of a vector space
E. Almost all of our applications will involve the vector space £ = M of tangent
vectors to a manifold at a point x € E. Consequently we shall denote a basis e of
Eby 8 = (8y,...,8,), with dual basis 0 = dx = (dx',...,dx"). It should be
remembered, however, that most of our constructions are simply linear algebra.

Definition: A covariant tensor of rank r is a multilinear real-valued function
Q:ExEx - --xE—->R

of r-tuples of vectors, multilinear meaning that the function Q(vy,...,v,) is
linear in each entry provided that the remaining entries are held fixed.

We emphasize that the values of this function must be independent of the basis in which
the components of the vectors are expressed.

A covariant vector is a covariant tensor of rank 1. Whenr = 2,a E:E::w& function
is called bilinear, and so forth. Probably the most important covariant second-rank tenso
is the metric tensor G, introduced in 2.1c:

G(v,w) == (V, W) Muw:c w/

is clearly bilinear (and is asswmed independent oﬁ basis).

We need a systematic notation for indices. Instead of writing i, j, ..., k, we shal
write iy, ..., ip.

In components, we have, by multilinearity,

- m W P
mwcﬁ,....sv = Mc__mr,...,vkcwmr
iy iy
i ir
”Mcm_m @:,...,Mtw@&. =,
i i,

- M v Q@8 ., 8y)

it
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That is,
QAAJ s ey <3 s M mrw::w,tﬂ e C“,..

[FOR

where Aw.w#v
_—— Qmmw:q ey @#v

We now introduce a very useful notational device, the Einstein summation conven-
tion. In any single term involving indices, a summation is implied over any index that
appears as both an upper (contravariant) and a lower (covariant) index. For example,
in a matrix A = (a' i al; = > a'; is the trace of the matrix. With this convention we
can write

OV, .o, v) = Qi i (2.35)

The collection of all covariant tensors of rank r forms a vector space under the usual
operations of addition of functions and multiplication of functions by real numbers.
These simply correspond to addition of their components Q; _; and multiplication of
the components by real numbers. The number of components in such a tensor is clearly
n". This vector space is the space of covariant r™ rank tensors and will be denoted by

E'QE ® QFE =QE"

If a and B are covectors, that is, elements of E*, we can form the second-rank
covariant tensor, the tensor product of « and g, as follows. We need only tell how
e®B . ExXxE >R

a® B(v,w) = a(v) B(w)
In components, & = ¢;dx’ and B = b;dx’, and from (2.34)
(@® B)ij =a® B0, 0)) =a(0)B(O)) = a;b;

(aib;), where i, j = 1,..., n, form the components of & ® . See Problem 2.4 (1) at
this time.

2.4b. Contravariant Tensors

Note first that a contravariant vector, that is, an element of £, can be considered as a
linear functional on covectors by defining

vio) = a(v)

In components v(a) = a;v' is clearly linear in the components of .

Definition: A contravariant tensor of rank s is a multilinear real valued func-
tion T on s-tuples of covectors

T E*XE*x--xE*->R
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As for covariant tensors, we can show immediately that for an s-tuple of 1-forms
oy, one, O
,NJAQT RN sz = Ay 4 ... Us D_N:._:;.,,,
where (2.36
Tt = T(dx", ..., dx™)
We write for this space of contravariant tensors
EQE® ---QF :=QE

Contravariant vectors are of course contravariant tensors of rank 1. An example
of a second-rank contravariant tensor is the inverse to the metric tensor G~ ', with
components (g'/),

G e, B) = g a;b;

(see 2.1c). Does the matrix g really define a tensor G~'? The local expression for
G~ ! (a, B) given is certainly bilinear, but are the values really independent of the
coordinate expressions of o and 87 Note that the vector b associated to § is coordinate:
independent since B8(v) = (v, b), and the metric (,) is coordinate-independent. Bu
then G, B) = g'a;b; = a;b' = a(b) is indeed independent of coordinates, anc
G~'is a tensor.

Given a pair v, w of contravariant vectors, we can form their tensor product v ® v
in the same manner as we did for covariant vectors. It is the second-rank contravarian
tensor with components (v ® w)¥/ = v'w/. As in Problem 2.4 (1) we may then write

G=g,;dy®dx and G'=g"0;,®09, (2.37

2.4¢. Mixed Tensors

The following definition in fact includes that of covariant and contravariant tensors a
special cases when r or s = 0.

Definition: A mixed tensor, r times covariant and s times contravariant, is a
real multilinear function W

W E*XE"x -+ XE'"XEXEx--+xFE->R

on s-tuples of covectors and r-tuples of vectors.
By multilinearity

iy Ji
S\AQT:.,QTJNT...,A\‘.V 7 A I / Y wh J.T:\...C_ .

where (2.38

S\::\ P SNA&R:“ sy mxxv

Lo Jr
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A second-rank mixed tensor arises from a linear transformation A : E — E. Define
Wa: E* x E — Rby Wa(a, v) = a(Av). Let A = (A%) be the matrix of A, that is,
A@@)) = %tﬁ; The components of W, are given by

Wa'p = Waldx', 8)) = dx'(A(8))) = dx' (B A'j) = §,A%; = AT,

The matrix of the mixed tensor W is simply the matrix of A! Conversely, given a mixed
tensor W, once covariant and once contravariant, we can define a linear transformation
A by saying A is that unique linear transformation such that W («, v) = «(Av). Such
an A exists since W(a, v) is linear in v. We shall not distinguish between a linear
transformation A and its associated mixed tensor W,: a linear transformation A is a
mixed tensor with components (A’ i)

Note that in components the bilinear form has a pleasant matrix expression

Wi, v) = a;A'jv/ =aAv
The tensor product w ® 8 of a vector and a covector is the mixed tensor defined by
(W Q B)a, v) = a(w)B(v)
As in Problem 2.4 (1)
A=A0,®dx! =8, @ A'; dx’
In particular, the identity linear transformation is
=08, ®dx' (2.38)

and its components are of course &
Note that we have written matrices A in three different ways, A;;, AY, and A;. The
first two define bilinear forms (on E and E*, respectively)

Ajjv'w’ and  AYa;b;

and only the last is the matrix of a linear transformation A : E — E. A point of
confusion in elementary linear algebra arises since the matrix of a linear transformation
there is usually written A;; and they make no distinction between linear transformations
and bilinear forms. We must make the distinction. In the case of an inner product space
E, {,) we may relate these different tensors as follows. Given a linear transformation
A: E — E, thatis, a mixed tensor, we may associate a covariant bilinear form A’ by

A (v, W) = (v, Aw) =o' gij At

Thus A!, = g; \.xt «- Note that we have “lowered the index j, making it a k, by means
of the metric tensor.” In tensor analysis one uses the same letter; that is, instead of A’
one merely writes A,

Aj = gi; Al (2.39)

It is clear from the placement of the indices that we now have a covariant tensor. This
is the matrix of the covariant bilinear form associated to the linear transformation A. In
general its components differ from those of the mixed tensor, but they coincide when
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the basis is orthonormal, g;; == & Since orthonormal bases are almost always used in
elementary linear algebra, they may dispense with the distinction.

In a similar manner one may associate to the linear transformation A a contravariant
bilinear form

A, p) = a;A'jg" by
whose matrix of components would be written
ik Pk
\f — \{\.%L

Recall that the components of a second-rank tensor always form a matrix such tha
the left-most index denotes the row and the right-most index the column, independen
of whether the index is up or down.

A final remark. The metric tensor {g;;}, being a covariant tensor, does not represent
linear transformation of E into itself. However, it does represent a linear transformatior
from E to E*, sending the vector with components v/ into the covector with component:

gijv.

2.4d. Transformation Properties of Tensors

As we have seen, a mixed tensor W has components (with respect to a basis & of
and the dual basis dx of E*) given by

S\_..:\».:N = gﬁ&xm, ey mxk\., @T BN Q\v

Under a change of bases, 0'; = d,(8x*/ax") and dx'"' = 3\«:\3& dx¢ we have, b
multilinearity,

W e = Wdx", ... dx" &, ... 0Y) .41z
- S\l__ (N (BN (3 e
dx¢ axd )\ ax* ax" e
Similarly, for covariant Q and contravariant 7" we have
dxk ax!
e e | 2.41t
@ [ 9yt 9y @»:.\ A
and
o 9 7 9 1J
il = (S (ke (241
dxk Ox!

Classical tensor analysts dealt not with multilinear functions, but rather with the
components. They would say that a mixed tensor assigns, to each basis of E, acollectic
of “components” W' I, such that under a change of basis the components transfor
by the law (2.41a). This is a convenient terminology generalizing (2.1).

Warning: A linear transformation (mixed Hosmoa A has eigenvalues A determine
by the equation Av = Av, that is, >N v/ = Av', but a covariant second-rank tensor
does not. This is evident just from oE notation; Q;; v/ = Av’' makes no sense sin
i is a covariant index on the left whereas it is a contravariant index on the right. ¢
course we can solve the linear equations Q;; v/ = Av' as in linear algebra; that |
we solve the secular equation det(Q — Al) = 0, but the point is that the solutions
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depend on the basis used. Under a change of basis, the transformation rule (2.41b) says
Q' = (8x*/9x"") Q14 (3x' /3x'). Thus we have
ax\" dx

0 = (=

dx’ dx’

and the solutions of det[ Q" — AT] = 0 in general differ from those of det[Q — AJ] = 0.
(In the case of a mixed tensor W, the transpose 7' is replaced by the inverse, yielding
an invariant equation det(W’ — AT) = det(W — AI).) It thus makes no intrinsic sense
to talk about the eigenvalues or eigenvectors of a quadratic form. Of course if we
have a metric tensor g given, to a covariant matrix @ we may form the mixed version
870 = W'y and then find the eigenvalues of this W. This is equivalent to solving

Qijv’ = rgiv’

and this requires

It is easy to see that this equation is independent of basis, as is clear also from our
notation. We may call these eigenvalues A the eigenvalues of the quadratic form with
respect to the given metric g. This situation arises in the problems of small oscillations
of a mechanical system; see Problem 2.4(4).

2.4e. Tensor Fields on Manifolds

A (ditferentiable) tensor field on a manifold has components that vary differentiably.
A Riemannian metric (g;;) is a very important second-rank covariant tensor field.

Tensors are important on manifolds because we are frequently required to construct
expressions by using local coordinates, yet we wish our expressions to have an intrinsic
meaning that all coordinate systems will agree upon.

Tensors in physics usually describe physical fields. For example, Einstein discovered
that the metric tensor (g;;) in 4-dimensional space~time describes the gravitational field,
to be discussed in Chapter 11. (This is similar to describing the Newtonian gravitational
field by the scalar Newtonian potential function ¢.) Different observers will usually
use different local coordinates in 4-space. By making measurements with “rulers and
clocks,” each observer can in principle measure the components g; ; for their coordi-
nate system. Since the metric of space-time is assumed to have physical significance
(Einstein’s discovery), although two observers will find different components in their
systems, the two sets of components g;; and g; ; will be related by the transformation
law for a covariant tensor of the second rank. The observers will then want to describe
and agree on the strength of the gravitational field, and this will involve derivatives
of their metric components, just as the Newtonian strength is measured by grad ¢. By
“agree,” we mean, presumably, that the strengths will again be components of some
tensor, perhaps of higher rank. In the Newtonian case the field is described by a scalar
¢ and the strength is a vector, grad(¢)). We shall see that this is not at all a trivial task.
We shall illustrate this point with a far simpler example; this example will be dealt with
more extensively later on, after we have developed the appropriate tools.
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Space~time is some manifold M, perhaps not R*. Electromagnetism is desci
locally by a “vector potential,” that is, by some vector field. It is not usually cle
the texts whether the vector is contravariant or covariant; recall that even in Minko
space there are differences in the components of the covariant and contravariant vers
of a vector field (see 2.1d). As you will learn in Problem 2.4(3), there is good re
to assume that the vector potential is a covector a = A ;dx/.

In the following we shall use the popular notations 9;¢p := 9¢/dx’, and 9’;
dp/ax".

The electromagnetic field strength will involve derivatives of the A’s, but it wi
clear from the following calculation that the expressions

mN.}\.

do not form the components of a second-rank tensor!

Theorem (2.42): If A; are the components of a covariant vector on any manifol
then

m\ == meW\, - mx\r

Jorm the components of a second-rank covariant tensor.

PROOF: We need only verify the transformation law in (2.42). Since @ = A da
is a covector, we have \&, = A&%J} and so

Fj, = 0/A, — 0/ A] = 9{(@x) A} — 8){(0}x) A))

ij
= (%) (3] A) + [(3]8]x) Al — (8}x")(0;A)) — (3;0/x") A,
= @) A)@)x") = (B)x) (0, A) (D)x")

(and since r and [ are dummy summation indices)
= (9x) (@) BA, — 0, Ar)
= @x"(x")F, O

Note that the term in brackets [ ] is what prevents 8; A; itself from defining a
sor. Note also that if our manifold were R" and if we restricted ourselves to /i
changes of coordinates, x" = hwx\. , then 9; A; would transform as a tensor. One
talk about objects that transform as tensors with respect to some restricted clas
coordinate systems; a cartesian tensor is one based on cartesian coordinate syst
that is, on orthogonal changes of coordinates. For the present we shall allow all cha
of coordinates. In our electromagnetic case, (Fj;) is the field strength tensor.

Our next immediate task will be the construction of a mathematical machine
“exterior calculus,” that will allow us systematically to generate “field strengths”
eralizing (2.42).
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Problems

2.4(1) Show that the second-rank tensor given in components by a;bjdx’ ® dx/ has
the same values as « ® g on any pair of vectors, and so

a®p=a bidx @ dx/
2.4(2) Let A: E — F be a linear transformation.

(i) Show by the transformation properties of a mixed tensor that the trace tr(A) =
Aljis indeed a scalar, that is, is independent of basis.
(i) Investigate 3~ A;.
2.4(3) Letv = v/, be a contravariant vector field on M.

() Show by the transformation properties that v; = g;v' yields a covariant
vector.

For the following you will need to use the chain rule

N axraxk ]\ axii

@mx:.l ) @mx;?\
ax\ gxk -
ii) Does 4; v/ yield a tensor?
\ .
iii) Does (9; v/ — 3, v/) yield a tensor?
j

2.4(4) Let (g = 0,4 = 0) be an equilibrium point for a dynamical system, that is, a
solution of Lagrange’s equations d/dt(3L/3¢") = L/ag" for which q and ¢ are
identically 0. Here L = T — V where V = V(q) and where 27 — gii(@q'yl is
assumed positive definite. Assume that q = 0 is a nondegenerate minimum for
V; thus 8V/9¢* = 0 and the Hessian matrix Qi = (0% V/aq/ag¥)(0) is positive
definite. For an approximation of small motions near the equilibrium point one
assumes g and ¢ are small and one discards all cubic and higher terms in these
quantities.

(i) Using Taylor expansions, show that Lagrange’ s equations in our quadratic
approximation become

(0 = - Qg

One may then find the eigenvalues of Q with respect to the kinetic energy
metric g; that is, we may solve det(Q — A =0.Lety=(y' ... y" bean
(constant) eigenvector for eigenvalue 1, and put g/(t) := sin tay

(i) Show that q(¢) satisfies Lagrange’s equation in the quadratic approximation,
and hence the eigendirection y yields a small harmonic oscillation with
frequency o = /X. The direction yyields a normal mode of vibration.

(i) Consider the double planar pendulum of Figure 1.10, with coordinates ¢' =
9 and g% = ¢, arm lengths /1 = b, = /, and masses my = 3, mp = 1. Write
down T and V and show that in our quadratic approximation we have

41 40

— 2 —
g=1 11 and Q=gl 01

Show that the normal mode frequencies are i = (2g/3H"? and w, =
(2g/ /2 with directions (y', y) = (9, ¢) = (1,2) and (1, —2).
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