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Chapter 2

Spatial Descriptions

2.1 Rigid Body Configuration

A manipulator is a mechanical system formed by the connection of a
set of rigid bodies, links, through joints. Joints provide each pair of
connected links with some freedom of relative motion. The descripticn
of the spatial location of a rigid body is therefore the basis for the
spatial description of a manipulator.

The configuration of a rigid body is a description of its pesition and
orientation. The position of a rigid body is determined by a descrip-
tion of the position of an arbitrary point attached to the rigid body.
The orientation of a rigid body is determined by the description of its
rotations about this point.

Position of a Point

Let us consider a point P of an Euclidean affine space E, where an
arbitrary point O has been selected as the origin. The position of P is

3




4 CHAPTER 2. SPATIAL DESCRIPTIONS

given by the vector p = OP. With respect to O, the positions of points:
P1, Pa...., Pn are described by the vectors: p; = OPy, p; = OP;,...,
pr = OPs.

For points of the 3-dimensional space, positions are described by vectors
p € R3. Let {x,y,z} be an orthonormal basis of R®. The components
of a vector p with respect to this basis are identical to the coordinates
of P given with respect to the coordinate frame R(O,x,y, z).

Taking the components of the vector p with respect to another or-
thonormal basis {x',y’,z'} correspond to a representation of P in a
coordinate frame having the same origin, O, and using the unit vectors
x, y', 2z’ 1e. R'(O,x,y",2), as shown in Figure 2.1. The relationship
between these two representations is given by the base transformation
or the coordinate transformation between the two frames of same origin.

Figure 2.1: Position of a Point

With respect to a different origin, ¢, the vector describing the position




2.1. RIGID BODY CONFIGURATION 5

of point P is p’ = O'P. Although p’ and p describe the position of the
same point, these two vectors are different.

Rotation Transformation

Rotation transformations are transformationc that operate on the unit
vectors of coordinate frames, while conserving the frame origins. These
transformations are equivalent to transformations between orthonormal
bases. A rotation transformation is defined by the relationships between
the unit vectors of two coordinate frames. The rotation transformation
between R(O,x,y,2z) and R'(O,x',y’,2'), of identical origin O (see
Figure 2.2), is described by a 3 x 3 orthonormal rotation matrix S.
The columns of S are the components of the three unit vectors X', v/,
and z’ expressed in the coordinate frame R.

Figure 2.2: Rotation Transformation.

Sirce S is an orthonormal matrix, its inverse is equal to its transpose,

§-1=g5T. (2.2)
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The rows of S define, therefore, the components of the three unit vectors
x, v, and z expressed with respect to the coordinate frame R/,

Xgﬂzw)
S = Yrey |- (2.3)

T
Zim)
Compound Rotations

The rotation matrix associated with a transformation resulting from a
set of consecutive rotation transformations is given by the product of
the corresponding rotation matrices.

Rigid Body Orientation

The orientation of a rigid body with respect to some reference frame R
is described by the rotation transformation between 7 and a coordinate
frame R’ attached to the rigid body.

Translational Transformation

Translational transformations define the relationships between crigins
of coordinate frames. The translational transformation of a coordinate
frame R(O,x,y,z) into R'{0',x,y,2z) (see Figure 2.3), is described by
a 3 x 1 column matrix d. d defines the coordinates of the origin &' of
R’ in the coordinate frame K. l‘

Coordinate Transformation

Coordinate transformations define the relationships between coordi-
nate frames. A coordinate frame R(O, x,y,z) can be transformed into
anv arbitrary coordinate frame R'(¢,x’,y’,2’) by a rotation transfor-
mation and a translation transformation, as shown in Figure 2.4. If

p’ = (z' v 2)7 is the column matrix representing the coordinates in R’

T

il
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Figure 2.3: Rotation Transformation.

of some point P, then the coordinates p = (z y z)7 in R of the point
P are given by the relationship

p = Sp +d. (2.4)

Homogeneous Transformation

The homogeneous transformation provides a compact matrix represen-
tation of coordinate transformation. A coordinate transformation be-
tween R and R’ that involves a rotation transformation S and a trans-
iation transformation d-is represented by the 4 x 4 matrix,

T:(‘g ‘f) (2.5)

Unlike S, the matrix T is not orthonormal. Its inverse is given by

Tl = (5; _'Sle) . (2.6)
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Figure 2.4: Coordinate Transformation.

With homogeneous transformations, the relationship (2.4) becomes,
PN _ (P -
(2)-7(%)

Compound Transformations

In consecutive transformations, the matrices associated with homoge-
neous transformations operate similarly to rotation matrices. The ma-
trix associated with a transformation resulting from a set of consecutive
transformations is given by the product of the corresponding homoge-
neous transformation matrices.

Rigid Body Position and Orientation

The position and orientation of a rigid body with respect to a coordinate
frame RO, x,y, z) is defined by the coordinate transformation between
R and an arbitrary coordinate frame R'((, X', ¥', 2') fixed with respect

T

P —
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to the rigid body, as shown in Figure 2.5. The position of the rigid body
is described by the translational components of this transformation,
while the orientation of the rigid body is described by the rotational
components.

Figure 2.5: Rigid Body Position and Orientation.

2.2 Manipulator Kinematics

A manipulator is treated as a holonomic system with a structure of an
open kinematic chain of n+1 rigid bodies, i.e., links, articulated through
n revolute and/or prismatic joints having one degree of freedom.

The kinematic relationship between a pair of adjacent links in the chain
is described by the coordinate transformation between two coordinate
frames attached to the two links. Links are numbered from 0, the
base, to n, the end-gffector, while joints are numbered from 1 to n (see
Figure 2.6).

A coordinate frame R;(O;, X;,¥:, 2;) is attached to link 4. The position
and orientation of the link ¢ with respect to link i—1 is described by the
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joint n

link n

joint 1
Figure 2.6: An Open Kinematic Chain.

transformation between a coordinate frame R;.1{O;_1,Xi—1, ¥i—1, Zi—1 )
attached to the link 1 — 1 and R;.

The z—axis. z;, of a coordinate frame R; are selected along the axis of
joint 1.

Parameters of Denavit-Hartenberg

The kinematic relationship between a pair of adjacent links i — 1 and
connected through a one-degree-of-freedom joint 7 can be completely de-
termined by a set of four parameters (e, a;, 8;, p;), called parameters of
Denavit- Hartenberg. These parameters define the homogeneous trans-
formation between the two coordinate frames attached to the two links.
With the convention shown in Figure 2.7, the Denavit-Hartenberg pa-
rameters are defined as '

o, : the angle between the z-axes of R; and R,.,, measured® about x;;

lin the right-hand sense
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a; : the length of the common normal to the z—axes of R; and R4y,
measured along x;;

g; : the angle between the x-axes of Ry_; and R; measured about z;.

p; ¢ the distance between the x-axes of R;_; and R; measured along
Z;.

——
—_—

Figure 2.7: Denavit-Hartenberg Parameters

COos 91' — sin 91' 0 aG-1)
T = sinf;cosapoyy cosficosag.yy —sinap-1y —pAsinopo)
U=Ui = 1 gin g, sin Q-1 cosfisinogoy  COS G-y i €OS Cy(i-1)
0 0 0 1
(2.8)

Generalized Coordinates

Configuration Parameters of a Mechanism: Any set of param-
eters that allow to completely specify, in a frame of reference Rg, the
positions and orientations of all links of the mechanism, i.e. its config-

uration.
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Generalized Coordinates: A set of independent configuration pa-
rameters forms a system of generalized coordinates for the mechanism.
The number of these independent parameters is defined as the number
of degrees of freedom.

Joint Coordinates: With revolute and/or prismatic joints, a chain
of n+ 1 articulated links possess n degree-of-freedom, and a set {q,,
G2,--., Gn} Of n joint coordinates can be selected as a generalized coor-
dinate system for the manipulator. Let us define the binary parameter

0 for a revolute joint 4;;
1 for a prismagic joint p;.
The " generalized coordinate can then be written as
g = &0; + €ip;; (2.10)
with
€i= 1—65. (211)

The configuration of the manipulator can then be described by the
vector q of components g;, ¢2,..., ¢, in the manipulator joint space.

Operational Coordinates ,
The end-effector configuration is described by the relationships between
the reference frame R, and a coordinate frame attached to the end-
effector. Although the coordinate frame R, couid be used for establish-
ing these relationships, it is often more convenient to select a different
coordinate frame whose origin is not located at the axis of joint n.

Let Opn4yy be the selected origin for the additional frame. The config-
uration of the end-effector can be defined by the relationships between
Ry and the coordinate frame Rn41y, as illustrated in Figure 2.8,

et
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Figure 2.8: End-Effector Position and Orientation

End-Effector Configuration Parameters: Any set of parameters
that allow to completely specify, in a frame of reference Ry, the posi-
tions and orientations of the end-effector, i.e. the configuration of the
end-effector.

Various sets of parameters, z;, Zg,..., Tm can be used for the descrip-
tion of the end-efector configuration. The number m of parameters
varies from one representation to another.

Task Configuration Parameters: A task that involves the posi-
tion and/or the orientation of the end-effector can be specified by a
subset my of the m end-effector configuration parameters. These mi,
parameters are called the task configuration parameters

Operational Coordinates: An operational coordinate system is a
set Ty, Tz,..., Tm, Of mp independent end-effector configuration pa-
rameters.

The configuration of the end-effector can then be described by the vec-
tor x of components 1, Ta,..., Tm, i0 operational space.
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End-Effector Degrees of Freedom: The number mg, which is in-
dependent of the selected set of end-effector configuration parameters,
represents a characteristic which is intrinsic to the mechanical struc-
ture of the manipulator and its end-effector. my can be viewed as the
number of degrees of freedom of the end-effector.

Figure 2.9: A Redundant Manipulator

Redundancy and Degrees of Redundancy

A manipulator is said to be redundant when the number of its degrees
of freedom is greater than the number of its end-effector degrees of
freedom. A given configuration of the end-effector of a redundant ma-
nipulator can be obtained with an infinite number of different configu-
rations of the redundant mechanism, two such configurations are shown
in Figure 2.9. n — mq represents the number of degrees of redundancy
of @ manipulator.,
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Redundancy can also be defined with respect to a task k. Let myq be
the number of independent parameters required to specify the config-
uration of the task. n — i is defined as the number of degrees of
redundancy of the manipulator with respect to the task k.

2.3 Manipulator Geometric Model

The manipulator geometric model is the system of m equations de-
scribing the end-effector configuration parameters as a function of the
manipulator joint coordinates.

At a given configuration q of the manipulator, the end-effector position
and orientation are determined by the matrix Tpnyq)(q) defining the
homogeneous transformation between the coordinate frames Ky and
Rins1). These are the coordinate frames associated with the manipu-
lator’s fixed base and its end-effector, respectively.

Totney(Q) = To:{01)T12{g2) - .- Ttno1)n(gn) Trgnry; (2.12)

where T,(n+1) is a constant matrix. The homogeneous transformation
matrix Tome1y{q) is

Tg(n+1}(Q) _ (S{)(n-ﬁ{-}l)(Q) dD(rrf»}l)(Q)) . (213)

Som+1)(q) contains the description of the end-effector orientation, while
dg(ns1) determines the end-effector position. Let x be the mx 1 column
matrix of end-effector configuration parameters, and g the nx 1 column
matrix of joint coordinates. The manipulator geometric model associ-
ated with the end-effector configuration parameters x can be obtained
fromn (2.13) and written in the form .

x = G(q). (2.14)

G is the m x 1 column matrix of m functions G, Ga,..., Gn. Let %,
be the column matrix of coordinates defining the position of O,y in
Ry, and X, the column matrix of coordinates defining the orientation of
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Rin+1 in Rg. The end-effector configuration can then be represented

as ( )
= [ *\4 ) 2.15
x(q) (x,(q) (2.15)
J 4
zZ
ARU O?‘H—l
I
O & v
p
T g

Figure 2.10: Position Representations

Position Representations

The end-effector position, x,(q), is obtained from dg(n41){q) which de-
fines the coordinates of the point O,y in the frame of reference TRy.
Among the various possible selections of position coordinates {see Fig-
ure 2.10) are,

Cartesian coordinates: xJ = (¢ y 2)7
cylindrical coordinates: x;": =(p# z)T;

spherical coordinates: x;"; =(r 8 ¢)T.
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Orientation Representations

At a given configuration g of the manipulator the end-effector ori-
entation can be uniquely determined by the transformation matrix
Sons1)(q) describing the orientation of the coordinate frame R4
with respect to the frame of reference R;.

Several different representations can be used to describe the orientation

of the end-effector. One of the most straightforward representations of
the end-effector orientation is based on the direct use of the elements

of Som+nyia)-

Direction Cosines

The end-effector rotation matrix Syn41)(q) can be written as

Sogm+1)(@) = (s1(a) so(a) ss(q)). (2.16)

The direction cosines representation of the end-effector orientation is
given by the 9 x 1 column matrix

xe(q) = | s2{q) |- (2.17)
sa{q)

This is a redundant representation of the orientation of the end-effector.

Euler Angles

Minimal representations of the orientation can be obtained with an-
gular parameters. A set of three independent angular parameters is
sufficient to describe the orientation of a rigid body with respect to a
reference frame. Among the various angular representations of rigid
body rotation are the Euler angles 1, 8, and ¢. The rotation of Rpn1yy
with respect to Ry can be viewed as the result of three consecutive
rotations represented by the matrices:

cp —syp 0O 1 0 0 e —s¢ O
Se=1sp c 0|; S=|0 cf —s8)|; S4=|36 cp 0
0 0 1 0 s cf 0 0 1
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The tetal rotation of the end-effector is
50(n+1}(Q) = Sy Sp Sg; - (2.18)
which vields

cpeg — shelsg  —cbsg — scled  spsh
Soneny(q) = | sYco +ciclsd  —sipsd - cibcheg —cpsf |; (2.19)
58s¢ sfco cf

where s and c represent the sin and cos functions respectively. The
Euler angles representation of the orientation is

¥(q)
x-(q) = | 8(q) |. (2.20)
#(q)

With s;; denoting the elements of the rotation matrix Spn41y(q), and
the assumption s33 # =1, the components of x,(gq} can be obtained
from (2.19) as,

U(q) = sgn(sia)arccos(—sa/\/1 - s3;);

f(q) = arccos{ss;); (2.21)
#(q) = sgn(ss)arccos(—s32/1/1 ~ s3;).

As for all minimal representations of the orientation, the Euler angles
representation can be singular. The singularity of this representation
arises at 833 = 21 or when (# = kw, k: integer). For these configura-
tions, only the difference or the sum of the angles ¥ and ¢ is defined.

Fuler Parameters

Rotations FRotations in the three dimensional space can be defined
as the product of two plane symmetries operating on the points of this
space.

Let us consider the two symmetries about the planes & and V. Let u
and v be two unit vectors normal to these planes. Let w be a unit

Kol
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vector along the line of intersection of the two planes such that u, v,
and w is a right-handed frame.

The transformation resulting from the consecutive application of sym-
metries with respect to planes I/ and V is equivalent to a rotation about
w by an angle § which is twice the angle between the vectors u and v,
as shown in Figure 2.12.

Figure 2.11: Rotations as Two-Plane-Symmetries

This rotation is defined by

u-v = cosf/2;

22
uxv = wsinf/2. (2:22)

Let wy, ws, and w3 be the components of the unit vector w in a frame
of reference R. The rotation by # about w is defined by the set of four
parameters '

Ao = cosb/2;

A = wsinf/2;

)\2 = Uun sin 8/2, (223)
)\3 = U3 sin 9/2
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A, A1, Ag, and Aj are the Euler parameters (Olinde-Rodrigues Param-
eters). These parameters satisfy the normality condition

M+ A2+ =1. (2.24)

A rotation between two coordinate frames R(0, x,y,z) and R'(O, %', ¥, 2)

can be described by a rotation of an angle § about a vector w passing
through the origin O. The 3 x 3 orthonormal rotation matrix Syas1y(q)
associated with this rotation transformation is

2x 203 =1 20— XoAa) 2005+ Agha)
SG[n~§-1}(Q) = 2()\1)\2 + /\0;\3) 2()@2 - )\22) -1 2(;’\2)\3 — )\0)\1)
2 A Az — Aoda)  200ahs + AeA) 2007+ AT — 1
(2.25)
Solving Euler Parameters from the above equation is complicated by
the sign determination problem. This problem resuits from the fact
that equation (2.23) only provides the signs of the products: {AgA,),
(Aoda), (Agrs), (MA2), (A1Az), (A2As). Assuming that € € [0,7], i.e.
Ag > 0, Euler parameters can be computed as

Ao = %\/En + 8§22 -+ 33 + 1

A = 5sgnlsa — $23)V/811 — S22 — Sa3 + 1

, (2.26)
Ao = ?59'“(513 - 531)\/“311 - 890 = 833 + 1;
As = gsgn(sa — s12)v/—811 — S22 + 833 + 1

where sgn is the sign function. Another algorithm for the computation
of Euler parameters is based on the following observation:

Lemma 1. For all rotations, at least one of the Euler parameters has
a magnitude larger than 1/2.

This is a straightforward result from the normality condition (2.24).
With Lemma 1, it can be assumed that, between two steps of compu-
tation, the sign of the largest Euler parameter is maintained constant.
This assumption is valid as long as the computation servo-rate is not
slower than half of the rotation rate of change (for a servo-rate of 50Hz,
the magnitude of angular velocity must not exceed 100 rad/sec!).

L.emma 1 is the basis for the following algorithm for the evaluation of
the Euler parameters. Starting from a known configuration, the values

e s
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at an instant ¢; of A(f;) are given by the expressions in one of the four
columns in Table 2.1 corresponding to the parameter with the largest
absolute value at instant £;_p,

Table 2.1: Euler Parameters Determination

| C PolCa=)l T alandl T Polteon)l T [alan)l |
” Ao(is) t JAYYL: l (832 — 823) /Ay 1 (813 — 331)/A2 I 821 — 512)//'—\3 ”
” Ar (i) 1 {533 — 523) /Do | A, /4 | (s21 + 512) /D I 513+ 531}/ Q3 H
[ A2(ts) | (513 — s31)/A0 | (521 + s12)/A | Ay /4 | (532 + 523}/ |
” Aslts) | (821 — 812) /Do | (813 -+ 531) /4, ' (532 + 523}/ D2 1 As/4 li
with

Ay = 2sgn{Ao(iu-1)) Ve + S22 + 833 + 1;

Ay = 2sgn{ A (1)) Ve — s — s+ L

Ay = 2sgn {Ao(fpien)) ) V=811 + S22 — S33 + 1; (2.27)

Az = 2sgn{As(fu-ny))vV—sn— sz +ss3+ L

Euler Angles and Euler Parameters

The relationships between Euler angles and Euler parameters are

e

sin(#/2) - cos ?,[; @ 2, s
N = sin(6/2) - sin{{v — ¢)/2); (2.28)
Az = cos(6/2) - sm((v-i-(ﬁ)/?).

>
I

‘We have seen that the Euler angles representation is singular when
(@ = k7). For these configurations, only the sum (when & is even) or
the difference (when £ is odd) of the angles 1 and ¢ is defined. However,
relations (2.28) only use the sum and the difference of these angles, and
the singularity of the representation is therefore eliminated for Euler
parameters.
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Chapter 3

Manipulator Kinematics

3.1 Kinematic Model

The kinematic model of a manipulator is the system of m equations
which describes the time-derivatives of end-effector configuration pa-
rameters as a function of the manipulator joint velocities. This model
results from the differentiation of the manipulator geometric model,
x = G(q). At a given configuration g, the time derivatives of the
end-effector configuration parameters, X, can be expressed as linear
functions of the joint velocities, . The kinematic rodel is ;

x=.J(a) g (3.1)

where J(q) is the m x n Jacobian matriz whose elements are

Tylq) = 5%@..-@. (3.2)

The Jacobian matrix can be interpreted as the matrix relating the dif-
ferential dq of joint coordinates to the differential dx of end-effector

23
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configuration parameters. The manipulator kinematic relationships can
be then defined by the manipulator differential model

dx = J(q) da; (3.3)
A third interpretation of the Jacobian matrix is obtained by replacing
the differentials dq and dx by the elementary displacements of joint

coordinates and end-effector configuration parameters. The resulting
relationship is called the manipulator variational model

dx = J{q) éq. (3.4)

3.1.1 Basic Jacobian

e

Figure 3.1: End-Effector Velocities

Different representations of the end-effector position and orientation
result in different kinematic models (and different Jacobian matrices).
However, the kinematic properties of a manipulator are expected to
be independent of the type of representation used for the description
of the end-effector configuration. These properties are described by a
basic kinematic model that is defined independently from the selected
end-effector representation. This model relies on the end-eflector linear
and angular velocities.

i
s

Jra—
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Let v and w be the vectors of the linear and instantaneous angular
velocities at the operational point (x,), as illustrated in Figure 3.1.
The basic kinematic model describes these velocities in terms of the
generalized joint velocities q.

The velocity of a link i with respect to link i-1 depends on the type
of joint i. For a prismatic joint, the velocity is described by a linear
velocity vector v;. For a revolute joint, the velocity is described by an
angular velocity vector w;. These vectors are related to g; by

Vi = & Zi G
Ei Z; Q1 (35)

Wi

Lip X Pin+1)
Vi

Din+1)

Figure 3.2: Contribution of joint velocities to end-effector velocities

The contribution of a joint to the end-efiector velocities depends on the
type of that joint (see Figure 3.2). A prismatic joint contributes, v,
to the end-effector linear velocity. A revolute joint contributes, w; to
the end-effector angular velocity and {(w; X pi(n+1)) to its linear velocity.
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The vector pin41) is the vector connecting the origins of frames R; and
Rin+1)- This yields '

T

v o= Z(fizi+€izi X Pi(n+1))4i; (3.6)
=1

Wy = ) EZifi (3.7)
=1

The basic kinematic model is
92| = Jol@a (3.5)

In this model, the matrix Jo(q), termed the basic Jacobian, is defined
independently of the particular set of parameters used to describe the
end-effector configuration. The general expression of the basic Jacobian
matrix is

(121 + &21 X Pin+1)) - - (€nZn + EZn X Prina1))
Jo(q) =
€2 e €nZn

(3.9}
The above form provides a vector representation of the Jacobian matrix.
The expression of this matrix in a given frame is obtained by evaluating
all vectors in that frame. The expressions of equations (3.6 and 3.7) in
the coordinate frame Ry are g

v = Y So ez + &7 Pi{mz)md) Gi; (3.10)
=1

W= Zsﬂi €iZ: §i; (3.11)
=1

where Z; represents the 3 X 3 operator of cross product by z; and ex-
pressed in 7R;. This is

fe>

Z9 { = Z; = 0 N (312)
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and
A 0 —Z3 Zy 0 -1 0
2= z3 0 -~z {=Z={1 0 0}. {3.13)
—2Z9 21 0 0 0 0

In frame Ry, the mg X n basic Jacobian matrix is given by

591 (612 + €1§p1(n+1) n ) Tt Sﬂn(fnz -+ E'nipn(1"a-+-l) )
(R1) (Ra)
Jo(aq) =

51 SmZ v gnSgnZ
(3.14)
Let 6xg be the mg-column matrix formed by the elementary displace-
ment §p and the elementary rotation 6&. The basic variational model
is defined as

5502 (52 ) = Jola) ¢ (3.15)

The basic Jacobian matrix, which is defined independently of the se-
lected representation, characterizes the mobility of the end-effector at
a given configuration.

End-Effector Mobility The mobility of the end-effector at a config-
uration q is defined as the rank of the matrix Jy(q).

For some configurations, called singular configurations, the end-effector
mobility locally decreases. A singular configuration is a configuration
q at which the end-effector locally loses the ability to move along or
rotate about some direction of the Cartesian space with any specified
velocity. ;

3.1.2 Jacobian Matrix

The Jacobian matrix associated with a given representation, x, of the
end-effector configuration can be obtained from the basic Jacobian ma-
trix Jo(q) by

J(q) = E{x}Jo(q); (3.16)
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The matrix E(x) is only dependent of the type of coordinates selected
to represent the position and orientation of the effector. E{x) is an
m % mg of the form

E(x) = (EPS‘P) E,?x,)) | (3.17)

3.1.3 Position Representations
Cartesian Coordinates

The matrix E,(x) associated with x, = (z y z)7 is identity matrix of
order 3.

Cylindrical Coordinates

The matrix E,{x) associated with x, = (p # z)}7 can be obtained from
the differentiation of the relationships expressing the identity

(zyz)T = (pcosf psinb z)7;
with respect to p, 4, and 2. This is

cosd sinfé 0§
E(x})=1| —sinf/p cosb/p 0 |. {(3.18)
0 0 1 -

Spherical Coordinates |

The matrix E,(x) associated with x, = {p 8 )7 can be obtained from
the differentiation of the relationships expressing the identity

(z y z)T = (pcosBsin g psinfsing pcos)”;
with respect to p, 8, and ¢. This is

cosfsin @ sin fsin ¢ cos ¢
E,(x)= | —sinf/(psing) cosb/{psing) 0 . (3.19)
cosfcos@/p sinfcos¢/p —sing/p
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3.1.4 Rotation Representations
Direction Cosines

With the direction cosines representation, the end-effector orientation
is described by the 9 x 1 column matrix

T T TyT.

X, = (s1 57 83)°;

where s;, s, and s3 are the components, in Ry, of the three unit vectors

X(n+1}r Yine1), and Zinay, associated with the coordinate frame Rynq1y.

Given the end-effector instantaneous angular velocity vector, w, the

time derivatives of the three unit vectors X¢n41), ¥(n+1), and Z(asyy, are

AX(ny1)

5 =YX F¥men (3.20)
aYin
—y;f"l—) = WX ¥n+1n (321)
d
%}l = w X Bn+i)- (322)

The components, in R, of the time derivatives of of X(nt1); Yin41)s and
Zin+1y, AIC

§; = —&uw; (3.23)

§p = =Saw; (3.24)

é3 = ——§3w. (325)

The matrix E,(x) associated with x, = (s] s3 s7)7 is the 8 x 3 matrix
_g§,

Ex) =% |. (3.26)
—3,

Euler Angles

The matrix E,(x) associated with x, = (1 8 ¢)7 is
—sinvcosf/sinfd  cosiypcosf/sing 1
E.(x)= cosy sin 0. (3.27)
siny/sinf —cosy/sinf 0
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Euler Parameters

The relationship between the angular velocity vector w and the time
derivative A of Euler parameters A = (A A} Az A3} is

1-

A= A (3.28)
where
. SR PR
1o A A=A
=10 8 (3.29)
A=A Ao
The matrix E,(x) associated with Euler parameters is
—A1 —Ah —Ag
R B S VA VS
E == - 30
T(XJ 2 2 ___/\3 AG Al (3 3 )
DYTEEED. PR T

3.2 Inverse Kinematic Model

Given a set of velocities or elementary displacements at the manipulator
joints. the Jacobian matrix provides a basic tool to uniquely determine
the velocities or elementary displacements at the end-effector. Often,
however, we are concerned with finding the inverse of the above rela-
tionship: the end-effector motion is specified and the problem is:to find
the corresponding velocities or elementary displacements at the joints.

Given the m x-n matrix J{q) and-the m elementary displacements &x;
the problem is to solve the system of m equations with the n unknowns,
éq, for all configuration q,

dx = J(q) dq. - (3.31)

The matrix J(q) operates between the two vector spaces B® and R™,
as illustrated in Figure 3.3. A vector éq € R™ is mapped by J into a

_m..:_k_._.x,
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Figure 3.3: The Mapping Associated with the Jacobian Matrix

vector 6x € R(J). R(J) is the range space or the column space of J.
The null space of J, N(J), is the subspace of R" such that all vectors
dq € R(J) verify

J(g) dq = 0. (3.32)

Let Jy,J3,...,J, be the columns of the Jacobian matrix, i.e.
J=(h .. )
The system of equations 3.31 can be written as
§x = Jy 6qy + Jy 8a + ... + Ty 8. (3.33)

In this form éx is expressed as a linear combination of the columns of
the Jacobian matrix.

Definition ~ Theorem 1 The system (3.31} is said to be consistent
and possesses at least one solution if and only if,

rank J = rank (J|éx); (3.34)
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where {J[6x) is the m x (n+ 1} matrix obtained by augmenting J with
the column matrix 4x.

Theorem 1 states the necessary and sufficient condition for the existence
of at least one solution for the system (3.31). This condition requires
the vector éx to be in the subspace spanned by the columns of J.

Since the Jacobian is a configuration dependert matrix, the existence of
a solution will depend on the manipulator configuration. The Jacobian
matrix also depends on the type of representation used to describe the
position and orientation of the end-effector.

3.2.1 Reduction to the Basic Kinematic Model

Using the basic Jacobian matrix Jy(q), we are going first to reduce the
dimension, m, of the initial problem of equation (3.31) to mg (my < m).
We have seen that a Jacobian matrix J(q) associated with a represen-
tation x of the end-effector configuration is expressed as the product of
matrices E(x)Jy(q). The system (3.31) becomes

x = E(x) dxg; ' (3.35)
Jo(q) dq. (3.36)

(5){0
E(x) is an m X mg matrix with m 2> mg.
Left Inverse The system (3.35) possesses a unique solution dx, for
every 0x, if and only if, rank £ = my, i.e. the columns of F are linearly

independent. In this case there exists an mg x m-left inverse, E™, such
that E*E = I,,,,, the identity matrix of order ms.

8xo = E*(x) 6x. (3.37)

The case rank E < g corresponds to configurations where the repre-
sentation is singular. The formula for a left inverse of E| is

E* = (ETE)ET. (3.38)

et e A i

Ly
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Using equation {3.17), left inverses of E(x) can be written in the form

oy B (%) 0
E (x)_( ; Ej"(x,))' (3.39)

For m = my, ET is simply the inverse matrix E~'.

3.2.2 Position Representations

Cartesian Coordinates

The matrix E;f (x,) is simply the inverse of the matrix E,(x,) associated
with z, = (z y z)7. This is the identity matrix of order 3.
Cylindrical Coordinates

The inverse of the matrix E,(x,) associated with x, = (p 8 z)7 is

cosff —psinfd O
(3.40)

E7'x,) = | —sind pcosf O
] 0 H

Spherical Coordinates
The inverse of E,{x,) associated with x, = (p § ¢)” is

cosfsing psinfsing pcosbcosd
E7lx,) = { —sinfsing pcosfsing psinfcosd | . (3.41)

7
cos ¢ 0 —psing
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3.2.3 Rotation Representations
Direction Cosines

The matrix E,(x,) associated with the direction cosines representation
x, = (sT sT sT)T is the 9 x 3 matrix

of rank 3. To find a left inverse of E{x,), one could use [ET (x,.) E,(x,)] ' EZ (x. ).

T

Observing
EX(x,)E (%) = (878, + 818, +818;) =2 I3
vields
Ero) = 5B (e) =5 (-8 —&F -§). (3.2

Euler Angles

The inverse of E.(x,) associated with x, = (¥ 8 ¢)7 is

0 cos®¥ sinisinf
Erlx,)=1]0 siny —cosysind |. (3.43)

1 0 cosd

Euler Parameters

The matrix F,(x,) associated with the Euler parameters representation
is a 4 x 3 matrix of rank 3. A left inverse E7(x,) can be obtained by
[ET(x.)E,(x.)]"'ET (x,). Observing

A =I5 (3.44)
yields

A1 As —A3 A
(3.45)

E:’(x,.) = 4E3-‘ =2 —)\2 )\3 )\0 “'}\1
—)\3 _)\2 Al /\0

I

x3

e
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3.2.4 Inverse of the Basic Kinematic Model

The initial problem is now reduced to the problem of solving the basic
kinematic model (3.36)

5){9 = Jg(q) 6(:1

This is a system of my eguations with n unknowns, where my < n.

Right Inverse The system (3.36) possesses at least one solution dq
for every 8xg, if and only if, rank Jy = my, i.e. the columns of Jy span
R™°. In this case there exists an n x mg right inverse, Ji, such that
JoJ§ = In,, the identity matrix of order myg. A right (left) inverse is a
special case of a generalized inverse.

General Solution Let J7(q) be a generalized inverse of the basic
Jacobian matrix. The general solution of the system (3.36) is

dq = JF(q) dxg + [l — JF () Jo(q)] ba; (3.46)

where [, is the identity matrix of order n, and the elementary joint
displacement dqq is arbitrary.

The n x n matrix [I, — J¥(q) Jo(q)] operates on vectors §qy € R 'to
produce vectors dq, € N{J)

oan = [In — J§ (q) Jo(a)] dq.

The mapping by J; of these vectors is the zero-vector of R™o,

Jo dap = [Jo — Jo J§ (@) Jo(q)] 6qo = 0.
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I

Figure 3.4: A Three-Degree-Of-Freedom Manipulator

Example 4 Let us consider the problem of solving the kinematic
model of the three-degree-of-freedom manipulator shown in Figure 3.4.
This manipulator is redundant with respect to the task of positioning
its end-effector. The Jacobian matrix associated with this task is

Jiq) = (—1131 — 15512 — 138123 —1y812 — 35123 ~—135123>
‘U= el 4 1el2 + 1123 Ded2 +15e123 el23 )

For simplicity, we will assume that the configuration of the manipulator
lies in the subspace defined by {g; = g2 =0} and that ly =l =3 = 1.
In this subspace, the Jacobian is

J__(—.S‘S 353 “83)
T\24¢3 1+e3 3/

This 2 x 3 matrix is of rank 2. The pseude-inverse, J* is the 3 x 2
matrix J7(JJ¥)"'. The matrix (JJ?) is

7T = ( 3553 —3(1 +¢3}s3 )
TA\=3(1+¢3)s3 3ce3+6c3+5

L

H

and

H

(JJT) ! = 1 (3cc3 +6e3+5 3(1 +c3)33>

6553 \ 3(1+ c3)s3 3583

1 (1+3e3) 3s3
Jre L L9 0 |.
653 \ (5 +3c3) —3s3

which vields

i
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The general solution in this subspace is
Sq=J% ox+[I; — JTJ] dqy;

where the 3 x 3 matrix [[; — J*J] associated with the null space is

1 -2 1
L—JtJ)=|-2 4 -2}
1 -2 1

This matrix is of rank 1.
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Chapter 4

Joint Space Framework

Robot control has been traditionally viewed from the perspective of a
manipulator's joint motions, and significant effort has been devoted to
the development of joint space dynamic models and control method-
ologies. However, the limitations of joint space control techniques,
especially in constrained motion tasks, have motivated alternative ap-
proaches for dealing with task-level dynamics and control. The discus-
sion here focuses on the joint space framework.

4.1 Joint Space Control

By its very nature, joint space control calls for transformations whereby
joint space descriptions are obtained from the robot task specifications.
Typically, a joint space control system is organized following the general
structure shown in Figure 4.1. At the highest level, tasks are specified
in terms of end-effector or manipulated object’s motion, compliances,
and contact forces and moments. Tasks are then transformed at the
intermediate level into descriptions in terms of joint positions, veloci-

3%
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ties, accelerations, compliances, and joint torques. This provides the
needed input to the control level, which acts at the robot joints.

Task Specification

¥
Joint Task Specification
A Joint Motion
} Commands
Joint ¢ Jom
Sensing Control
§ |

Robot & Environment

Figure 4.1: Joint Space Control Structure

4.1.1 Motion Coordination

An important kinematic issue associated with motion control of robot
mechanisms, is the inverse kinematic problem or more generally the task
transformation problem. This problem is raised by the discrepancy
between the space where robot tasks are specified and the space in
which the control is taking place.

Tasks are specified with respect to the robot’s end-effector or manipu-
lated object, while motions are typically controlled through the action
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of servo-controllers that effect the positions and velocities of the robot’s
joints. Finding the set of joint trajectories, inputs to the joint servo-
controllers, that would produce the specified task is the central issue in
the task transformation problem.

Obviously, the need for solutions of the inverse kinematic problem is not
limited to the motion control problem. The inverse kinematic is needed
in workspace analysis, design, simulations, and planning of robot mo-
tions. By its computational complexity, however, the inverse kinematic
problem becomes more critical in reai-time control implementations.
This is, for instance, the case of tasks when the robot is called to ac-
commodate motion that cannot be completely pre-planned or to make
corrections generated by external sensory devices.

The computation complexity of the inverse kinematic problem has led
to solutions based on the inverse of the linearized kinematic model.
This model expresses the relationship between the vector §q associated
with the variations of joint positions and the vector dx associated with
the corresponding variations of the positions and orientations of the
end-effector,

ox = J{g)dq; (4.1)

where J(q) is the Jacobian matrix. For an n-degree-of-freedom manip-
ulator with an end-effector operating in an m-dimensional space, J {q)
is an m X 7 matrix.

Using the linearized kinematic model (4.1), Whitney (1972) proposed
the resolved motion-rate control approach for the coordination of manip-
ulator joint motions. The resolved motion-rate control uses the inverse
of the linear relationship of equation {4.1). For a non-redundant ma-
nipulator for which a non-redundant representation of the position and
orientation of the end-effector is used, i.e. n = m = my, the solution is
simply

5q = J}{q)dx. (4.2)

For a given trajectory of the end-effector, motion contro! is achieved
by continuously controlling the manipulator from the current position
q to the position q + 4q.
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4.1.2 Redundant Manipulators

Motion redundancy is an important characteristic for extending robot
applications to complex tasks and workspaces. Manipulators with six
degrees of freedom can generally realize an arbitrary position and ori-
entation of the end-effector. However, this cannot be achieved if certain
joint movements are precluded by obstacles. The workspace of a six-
degree-of-freedom arm has to be carefully structured and motions care-
fully planned to satisfy obstacle constraints. By appropriate addition
of motion redundancy, the dexterity of a2 manipulator can be greatly
improved.

The joint space task transformation problem is exacerbated for mech-
anisms with redundancy or at kinematic singularities. The typical ap-
proach involves the use of pseudo- or generalized inverses to solve an
under-constrained or degenerate system of linear equations, while op-
timizing some given criterion.

The position and orientation of the end-effector of a redundant mech-
anism can be obtained with an infinite number of postures of its links.
Generalized inverses and pseudo-inverses (Whitney 1972, Liegois 1977,
Fournier 1980, Hanafusa et al. 1981) have been used to solve the kine-
matic equation (4.1). Using a generalized inverse J¥{q) of the Jacobian
matrix, the general solution of the system (4.1) is

§q = J¥(@)dx + [[ — J*(a)J(Q))dqe;  (4.3)

where I is the identity matrix of appropriate dimensions and éqq de-
notes an arbitrary vector. The matrix [ — J#(q)J(q)] defines the null
space associated with J%(q), and vectors of the form [/—J%(q)J(q)]dqo
correspond to zero-variation of the position and orientation of the end-
effector. The additional freedom of motion associated with pull space is
generally used to minimize some criteria, such as the avoidance of joint
limits (Liegois, 1977; Fournier, 1980), obstacles (Hanafusa, Yoshikawsa,
and Nakamura, 1981; Kircanski and Vukobratovic, 1984; Espiau and
Boulic, 1985) and kinematic singularities (Luh and Gu, 1985), the min-
imization of actuator joint forces (Hollerbach and Suh, 1983), or ob-
taining isotropic velocity characteristics (Ghosal and Roth, 1987).

-5

e T T
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4.1.3 PID Control Schemes

Current industrial robots relies almost exclusively on the concept of
joint position control. In these robots, PID controllers are used to
independently control a manipulator’s joints. Since the inertia seen
at each joint varies with the robot configuration, the PID gains are
selected for some average configuration in the workspace. The dynamic
interaction between joints is ignored, and the disturbance rejection of
the dynamic forces relies on the use of large gains and high servo rates.

The implementation of PID control is quite simple, and the perfor-
mance of PID controllers has been sufficient for many industrial tasks.
However, the performance of PID controllers decreases when dynamic
effects become significant. The undesirable effects increase with the
range of motion, speed, and acceleration at which the robot is operat-
ing.

4.2 Joint Space Dynamic Model

A manipulator is treated as a holonomic system with a structure of an
open kinematic chain of n+1 rigid bodies, Le. links, connected through
n revolute and/or prismatic joints having one degree of freedom.

With revolute and/or prismatic joints, a chain of n+1 links possess n
degree-of-freedom. The set {q1, g2, .-, gn} of n joint coordinates form
a system of generalized coordinates for the manipulator. The configu-
ration of the manipulator is described by the vector q of components
g1, G2,..-» Gn in the manipulator joint space. f

Using the Lagrangian formalism, the equations of motion in joint space
of an n-degree-of-freedom manipulator are
d 8L, dL
—(z) -5 =1}
dt'8q’ dq
where T is the generalized force vector and where L(q, q) is the La-
grangian given by

(4.4)

L(g,q) = T{(q,q) — U(q);
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where T and U are the total kinetic energy and potential energy of the
manipulator, respectively.

4.2.1 Kinetic Energy

The kinetic energy of this holonomic system is a quadratic form of the
generalized velocities

T(q,4) = 74" A(@)d: (¢3)

where A(q) designates the n x n symmetric matrix of the quadratic
form, i.e. the kinetic energy matrix. The kinetic energy of the i** link

1S

1
T = 3(?7%‘ va ve, + wf Io wi); (4.6)

e

where v¢, and w; represent, respectively, the linear velocity vector and
the angular velocity vector at the center of mass, C; of link 1. m; is the
mass of link ¢ andJ¢, is the i** link’s inertia matrix evaluated at the
center of mass C;. The kinetic energy of the manipulator is

T-3T.
i=1

Velocities at Center-of-Mass The manipulator kinematics yie?ds
v, = Ju & (4.7)
and

w = Jo; 4. (4.8)

Jacoblan Matrix J,;

The Jacobian matrix J,; can be directly obtained by differentiating
the position vector p¢,, which locates the center-of-mass of link 7 with
respect to the manipulator base, as shown in Figure 4.2

= [8pe fPc. | PPo
Ju(q) = [ 2 e P50 0 - 0] (49)
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Figure 4.2: Position of Center of Mass

The matrix J,;(q) can also be obtained from the general form

Ji(Q) = [(e12: + @121 X P1g;) (€:Z; + &Z; x pic;) O - 0];
(4.10)

where p;¢, is the vector connecting joint j to C;, as shown in Figure
4.3. z; is the unit vector along joint axis z.

Jacobian Matrix J;

The matrix J.:{q) is given by

Jula) = (&2, &zo -+ &2z; 0 0 -+ 0). {4.11}

Kinetic Energy Matrix The kinetic energy matrix A(q) of the ma-
nipulator is
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Figure 4.3: Position Vectors: pig,,-.» Pic;,-» and Pic;

A(q} = Z(mi J;i Jvi = J_:I;z IC';‘ sz’)' (4'12)
i=1

The equations of motion (4.4) can be written in the form
Alg)g+b(q.q)+eglq)=T; (4.13)

where b{q, ¢} represents the vector of centrifugal and Coriolis forces.
This vector is

4 A4
aT A4

b(a,q) = A(a)g - % : ; (4.14)

4" A4

;.?;.4?%’»5%'*
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where
dA

Q’{:g{;'

Centrifugal and Coriolis Forces Using the Christoffel symbols,
the vector b(q, q) can be obtained from the partial derivatives of A(q)
and the generalized velocities, . The Christoffel symbols are

1
bi,jk = 5(%‘:: + Qg — ajki); (4.15)

where a;jx is the partial derivative with respect to g, of the {i;j} element
of the matrix A(q)

aagj

Oqs

Using the Christoffel symbols, the centrifugal and Coriolis force vector
can be written as

aijk =

b{q, 4) = B(a)[ad] + C(q)[a%); (4.16)

where B{q) is the n x n{n — 1}/2 matrix associated with the Ceriolis
forces given by

?-bl,l? P le,ln 2(’31’23 e Zbl,Zn e 2(’31*(,1_1),1
20012 ... 2boan Zhaay ... 2032n -0 2bognoim
Bay=| = ,
2bp12 oo. 2baan 2bnos .. 2baan ... Zbonoun
(417)

and where C(q) is the n x n matrix associated with the centrifugal
forces given by

bl,ll 51,22 e bl,nn
'52,11 b2,22 e bQ,nn

Cla=| S : (4.18)

bn,ll bﬂ,22 bn,nn
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[q) and [g?] are the symbolic notations for the n(n — 1)/2 x 1 and
n X 1 column matrices:

@ =[ ¢...¢45 (4.19)
and

[Ga] = (g1 G1ds.--Grdn Goda-- - Gadn .-~ Gn1dnl - (4.20)

4.2.2 Potential Energy

Figure 4.4: Gravity Forces

If gy represents the vector of gravity acceleration, as shown in Figure
4.4 the potential energy U;(q) corresponding to link i is

Ui(a) = mi(—pe.) go-

The manipulator potential energy can be written as

U@=—im£@- (4.21)

=1

e

T

e e
”;.!Lr'.nv‘

R i




o Eee e

4.2. JOINT SPACE DYNAMIC MODEL 49

The vector of gravity forces, g{q) is given by

G(x) = VU(a)
The j** component of g is
o L dpcir
= T = = M g2a-
%= 5a 42 5 ) TE

Using the transpose of the Jacobian matrix associated with the vector
Pci, the vector of gravity forces can be written as

5(@) = =3 J% (mugo). (422)

Example 1

Figure 4.5: An RP Manipulater

The links of the RP manipulator shown in Figure 4.5 have total mass
m,; and m». The center of mass of link 1 is located at a distance [; of the
joint axis 1, and the center of mass of link 2 is located at the distance
g, from the joint axis 1. The inertia tensors of these links evaluated at
the center of mass with respect to axes parallel to R are

IIII 0 O II:;_-Q 0 O
Icl = 0 Iyyl 0 3 and IC: = 0 Iyyg 0 .

O G Izzl 0 0 Iz:2
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Matrix A

The kinetic energy matrix A is obtained by applying equation (4.12)
to this 2 d.o.f manipulator:

A=mJNTn + I e Jor + mad S dn + I T oy Jun.

Ju1 and J,, are obtained by direct differentiation of the vectors:
liel gacl

Per = |Lisl|; and pea= |@sl|.

0 0

In 7y, these matrices are:
—iys1 0] —gz51 cl
Jo= | Liel i Juw= gacl sl
0 0 0 0

2 2
m}(-]zﬂ‘]vl) = [mézl g}! (mzjgzjuz) = [mégg 0 ]

T

oo

This vields

The matrices J,, and J,, are given by
le = [Elzl 0} = and Jui = [6_121 E_ZQ].
Joint 1 is revolute and joint 2 is prismatic. In Ry, these matrices are:

0 0 |
Joi=Joe=10 0. '
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and
TIPS Iz O
ULleda) =50 oi (hleda) =[5 .

Finally, the matrix 4 is

A = {mllf +I;1+mgq%+1122 0 }

0 Ma
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Centrifugal and Coriolis Vector b

The Christoffel Symbols are defined as

1 Ba:. _
bi,jk = 5(aijk -+ Qiks — ajk,-); where Qijk = 5‘5‘1; with b:’ii = bijg = 0.
k

For this manipulator, only a;; (see matrix A4) is configuration dependent
~ function of g,. This implies that only a0 18 non-zero,

ayjz = 2maga.

Matrix B
_ 2b112 _[szlh]
B_{ i }.. L)
Matrix C
G & ] 0
c-13, %71 [ 3
by 0 —magy QO
Vector b

L I}

—M2ga

The Gravity Vector g

g = —[Jmige + J3magol. 5
In Ry, the gravity vector is

0 0
- MZIS]. 1161 0 _ . ["'QgSl Q2C1 G} ]
E=l o o o] { 7’519“} Tla s ool | TR

and
g = [(mlil + mz@z)god]

magoesl




CHAPTER 4. JOINT SPACE FRAMEWORK

oo
[gw]

Equations of Motion

mil} + Lo +magd+ a0 ][ 2magz . . 4
[ 0 Mo 52 + 0 [‘1192]+
[ c Uj! [q%] . [(mlh-%*mzm)gocl} _ [Fx]

b+ = )
—magz 0] |@3 mygysl [

4.3 Joint Space Dynamic Control

In dvnamic control schemes, the manipulator dynamic model is used
to compensate for the configuration dependency of the inertias, and
for the inertial coupling, centrifugal, Coriolis, and gravity forces. This
technique is based on the theory of nonlinear dynamic decoupling (Fre-
und, 1975), or the so called “computed torque method.”

The dynamic decoupling and motion control of a manipulator in joint
space is achieved by selecting the control structure

T = A(Q)T” + b(q,4) + &la); (4.23)

where, A(q), b(q, q), and §(q) represent the estimates of A(q), b(q, &),
and g(q). I'* is the input of the decoupled system. At this jevel, varicus
control structures can be selected, e.g. PID, adaptive control, or robust
control.

Qg , 5

e SETVO J}; AlqQ) L Robot %49

dd: Qg
9 J
.+.

Figure 4.6: Joint Space Dynamic Control
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Chapter 5

Operational Space
Framework

Task specification for motion and contact forces, dynamics, and force
sensing feedback, are most closely linked to the end-effector’s motion.
Joint space dynamic models are, obviously, unable to provide a descrip-
tion of the end-effector’s dynamic behavior, which is crucial for the
analysis and control of the end-effector’s motion and applied forces.

5.1 Basic Concept

The basic idea in the operational space approach is to control motions
and contact forces through the use of control forces that act directly
at the level of the end-effector. These control forces are produced by
the application of corresponding torques and forces at the manipulator
joints. :

For instance, subjecting the end-effector to the gradient of an attractive
potential field will result in joint motions that position the effector at

53



54 CHAPTER 5. OPERATIONAL SPACE FRAMEWORK

the configuration corresponding to the minimum of this potential field.
This type of control can be shown to be stable. However, the dynamic
performance of such a control scheme will clearly be limited, given the
inertial interactions between the moving links.

High performance control of end-effector motions and contact forces
requires the construction of a model describing the dynamic behavior
as perceived at the end-effector, or more precisely at the point on the
effector where the task is specified. This point is called the operational
potnd.

A coordinate system associated with the cperational point is used to
define a set of operational coordinates. A set of operational forces act-
ing on the end-effector is associated with the system of operational
coordinates selected to describe the position and orientation of the
end-effector. The construction of the end-effector dynamic model is
achieved by expressing the relationship between its positions, veloci-
ties, and accelerations, and the operational forces acting on it.

The operational forces are produced by submitting the manipulator to
the corresponding joint forces, using a simple force transformation. The
use of the forces generated at the end-effector to control motions leads
to a natural integration of active force control. In this framework,
simultaneous control of motions and forces is achieved by a unified
command vector for controlling both the motions and forces at-the
operational point. -

The operational space robot control system is organized in a hierarchi-
cal structure, as shown in Figure 5.1, of three control levels: .

o Tuask Specification Level: At thislevel, tasks are described in terms
of motion and contact forces of the manipulated object or tool.

o Effector Level: This level is associated with the end-effector dy-
namic model, the basis for the control of the end-effector mo-
tion and contact forces. The output here is the vector of joint
forces and torques to be produced by the joint level in order to
generate the operational forces and moments associated with the
end-effector control vector.
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e Joint Level. This level is formed by the set of individual joint
torque controllers, allowing each joint to produce its assigned
torque component for producing the vector of joint torques cor-
responding to the end-eflector control vector. '

Task Specification

’t\ I Maotion/Force
[ \I’, Commands
Effector EOO—GDOHZ} Effector
Sensing Control
? Torgue
l Commands
Joint | 1-3KHz o Joint
Sensing Control
C J

Robot & Environment

Figure 5.1: Operational Space Control Structure

5.2 Effector Equations of Motion

When the dynamic response or impact force at some point on the end-
effector or manipulated object are of interest, the inertial properties
involved are those evaluated at that point, termed the operational point.
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Attaching a coordinate frame to the end-effector at the operational
point and using the relationships between this frame and the reference
frame attached to the manipulator base provides a description, x, of
the configuration, i.e. position and orientation, of the effector.

First, let us consider the case of non-redundant manipulators, where a
set of operational coordinates forms a system of generalized coordinates
for the manipulator. The manipulator configuration is represented by
the column matrix q of n joint coordinates, and the end-effector posi-
tion and orientation is described, in the frame of reference Rg, by the
mg X 1 column matrix x of independent configuration parameters, i.e.,
operational coordinates. The number, my, of independent parameters
needed to describe the position and orientation of the end-effector de-
termines the number of degrees of freedom the end-effector possesses.
With the non-redundancy assumption we have the equality n = mjg.

Now let us examine the conditions under which a set of independent
end-effector configuration parameters can be used as a generalized co-
ordinate system for a non-redundant manipulator. In the reference
frame Ky, the system of mg equations expressing the components of x
as functions of joint coordinates, i.e., the geometric model, is given by

x = G(q). (5.1)

Let g, and g; be respectively the minimal and maximal bounds of the it
joint coordinate g;. The manipulator configuration represented by the
point q in joint space is confined to the hyper-parallelepiped defined by
the products of the intervals [g , T}, :

Dy = ﬁ[ﬂy@i]- (6.2)

Let D. be the domain of the operational space corresponding to the
vector-function G over D,. Obviously, for an arbitrary kinematic link-
age and arbitrary joint boundaries, G is not one-to-one. Generally, a
configuration x of the end-effector could be cobtained from several dif-
ferent configurations qe, Qe, etc., of the manipulator. The restriction
to a domain where G is one-to-one is therefore necessary in order to
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5.2, EFFECTOR EQUATIONS OF MOTION 57

construct, with the operational coordinates, a system of generalized
coordinates for the manipulator.

In addition, for some configurations, the end-effector motion is re-
stricted by the linkage constraints and its freedom of motion locally
decreases. These are the singular configurations, which can be found
by considering the differential characteristics of the geometric model
G. Singular configurations, qeDq, are those where the Jacobian ma-
trix J{q) involved in the variational or kinematic model associated with
G!
ox = J(q)ig;

is singular.

Let D, be a domain obtained from D, by excluding the manipulator
singular configurations and such that the vector function G of (5.1) is
one-to-one. Let D, designate the domain

D, = G(D,). (5.3)

The independent parameters 21, Zo, . . ., Ty, form a complete set of con-
figuration parameters for a non-redundant manipulator, in the domain
D. of the operational space and thus constitute a system of generalized
coordinates for the manipulator.

The kinetic energy of the holonomic system is a quadratic form of the
generalized operational velocities

Tix,%) = %xTA(x)x; (5.4)

where A(x) designates the my X mg symmetric matrix of the quadratic
form, i.e., the kinetic energy matrix. This matrix describes the effector’s
inertial properties.

Using the Lagrangian formalism, the end-effector equations of motion

are
d oL, 0L -
o) e b (55)

where the Lagrangian L{x,%) is

L{x,x)=T(x,%x) — U(x);
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and U(x) represents the potential energy due to gravity. F is the op-
erational force vector. Let p(x) be the vector of gravity forces

p(x) = VU(x).

The end-effector equations of motion in operational space can be writ-
ten (Khatib 1980, Khatib 1987) in the form

Alx)% + pu(x,x) + p(x) = F; (5.6)

where p(x, %)} is the vector of centrifugal and Coriolis forces.

Joint Space/Operational Space Relationships

The relationship between the matrices A(x} and A(q) can be estab-
lished by stating the identity between the two quadratic forms of kinetic
energy:

1, . 1, .

547 A(@)g = X AX)%.

2
Using the kinematic model this identity yields
Alq) = JT(q)A(x)J{q). {5.7)

The relationship between the centrifugal and Coriolis forces b{q, ) and
1(x. %) can be established by the expansion of the expression of u(x, %)
that results from (5.5), B

w(x,x) = Alx)x — VI'(x,%).
Using the expression of A(x) in (5.7}, p(x, %) can be written as

Ax = JT(@A(9)d~ Ala)h(g, &) + T T (@) A(d)y
VT(x,%) = J Ha)l{g,q)+JT(QA(QE

where ]
h{q,q) = J(q)q. (5.8)

and

1

quAq;(Q)éi; (t=1,...,n).

lz’(q: CI) =

| ey
e i

[ Saa—Y
i S
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The subscript 4, indicates the partial derivative with respect to the §th
joint coordinate. Observing from the definition of b{q, q) that,

yields,
u(x, %) = J T (q)b(q,q) — Ala)h{q,q). (5.9)

The relationship between the expressions of gravity forces can be ob-
tained using the identity between the functions expressing the gravity
potential energy in the two systems of generalized coordinates and the
relationships between the partial derivatives with respect to these co-
ordinates. Using the definition of the Jacobian matrix yields,

p(x) = J T (q)g(q). (5.10)

In the foregoing relations, the components involved in the end-effector
equations of motion, i.e., A, u, p, are expressed in terms of joint coor-
dinates. This solves the ambiguity in defining the configuration of the
manipulator corresponding to a configuration of the end-effector in the
domain D,.. With these expressions, the restriction to the domain De,
where G is one-to-one, then becomes unnecessary. Indeed, the domain
of definition of the end-effector dynamic model of a non-redundant ma-
nipulator can be extended to the domain D, defined by

-"ﬁz = G(@-Q):

where “ﬁq is the domain resulting from D, by excluding the kinematic
singular configurations.

Finally, the above relationships allow to rewrite the end-effector inertial .
and gravity forces which appear in the left-hand side of equation (5.6)
as

T (q)[A(q)§ + bla, 4) + g(a)] = A(x)% + p(x,%) + p(x).
Substituting the right-hand sides of equations (4.13) and (5.6) yields

I = J7(q)F. (5.11)
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This shows the extension to the dynamic case of the force/torque re-
lationship whose derivation from the virtual work principie assumes
static equilibrium. This relationship is the basis for the actua! control
of manipulators in operational space.

The joint space centrifugal and Coriolis force vector b(q,q) car be
writien in the form

b{q,q) = B{q)[qq); (5.12)
where B(q) is the n x n{n+ 1)/2 matrix given by
biar 26132 ... 2bi4, biaa 20123 ... 2bion ... b1 nn
bany 26312 ... 2hy4, bose 26303 ... 26390 ... bann
B(q) =
bn,il 2511,12 an,ln bn,22 an,23 an,Qn bn,nn
(5.13)
and
Al =14 dide G165 Gidn &3 Gady...Gagn.. 2T, (5.14)

bi j& are the Christoffel symbols given as a function of the partial deriva-
tives of the joint space kinetic energy matrix A(q) w.r.t. the generalized
coordinates q by :

1 aai}- . Baik 53]'}:

b = = : . 3.15
Jk z(aqk aqj aql ) (D O)

Similarly the vector h{g, §) can be written as |
h{q,q) = H(q){qq]. (5.16)

The expression of the operational space centrifugal and Coriolis forces
becomes

p(x,%) = [J7"(a)B(q) - Alq)H(q)][gq). (5.17)

In summary the relationships between the components of the joint space
dynamic model and those of the operational space dynamic model are

I N




————

Nt

b

Y

5.3. END-EFFECTOR MOTION CONTROL 61

Alx) = JT{q)A(q)J ™ (a);
p(x, %) 7T (q)B(q) — Alq)H(q)}[qq);
p(x) = J 7 (q)glq)

{

5.3 End-Effector Motion Control

The generalized joint forces I required to produce the operational forces
F are

I = J (q)F; (5.18)
This relationship is the basis for the actual control of manipulators in
operational space.

5.3.1 Passive Systems

The most simple design of end-effector motion control is to submit
the end-effector to the gradient of an attractive potential field. An
attractive potential field to a goal position Xgea is a positive continuous
differentiable function, which attains its minimum when x = X;0,. This
is for instance

1
Ugaal = "Q"kp(x - Xgoai)T(X - xgoal);

where k, is a constant.

In order to compensate for the gravity effects, the control vector must
in addition include an estimate of the gravity forces, p = V.,U. The
end-effector equations of motion become

d 8T, 8T —-U)_ 8(Uga—0)

priGrl Bx

With a perfect gravity compensation ([7 = [J}, the equations can be
written as
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—(5z)~—= =0 (5.19)

The resulting system is a conservative system with a stable oscillatory
motions around the goal position Xgoal- Asymptotic stabilization of this
system can be achieved by the addition of dissipative forces F,. Since
all non-dissipative forces in this control design are conservative, the
asymptotic stability condition can be simply stated as

FIx <0; forx+#0. (5.20)
For instance, F, could be selected as
F,=—-kx%;

and the asymptotic stability condition implies that k, must be posi-
tive. This type of control ignores the dynamic interaction between the
moving links in the mechanical system and its dynamic performance
are very limited.

5.3.2 Dynamic Decoupling

The dynamic decoupling and motion control of the manipulator in op-
erational space is achieved by selecting the control structure

F = A(x)F* + i(x, %) + p(x); (5.21)

where, A(x), i{x, %), and P(x) represent the estimates of A(x), p(x, %),
and p(x). The system (5.6) under the command (5.21) can be repre-
sented by

ImeX = G(x)F” + e(x,%) + d(t); (5.22)

where I, is the my % my identity matrix, and

Glx) = ATY(x)A(x); (5.23)
ex,%) = ATH(X)E(x, %)+ B(x)]. (5.24)

4
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with

ﬁ'(x%}-{) = B
p(x) = D

(x, %) — u(x, %); (5.25)

(x) = plx). (5.26)

d(t) includes unmodeled disturbances. With a perfect nonlinear dy-
namic decoupling, the end-effector becomes equivalent to a single unt
mass, Im,, moving in the mq-dimensional space,

Ing% =F*. (5.27)

F~ is the input of the decoupled end-effector. This provides z general
framework for the selection of various control structures

The stability and robustness of this type of control structures requires
good estimates of the manipulators dynamic parameters. The param-
eters related to the Coriolis and centrifugal forces are particularly crit-
ical for the stability of the system. In fact it is better to set fi(x, x) in
equation (5.21) to zero rather than to use a poor estimate, which could
results in a globally unstable damping in the system.

5.3.3 Goal Position

For tasks that involve large motion to a goal position, where a particular
trajectory is not required, a PD controller of the form

F* = —k,% — kp(x — X,); (5.28)

where x, is the goal position will result in a poor coordination of the!
end-effector motions along its degrees of freedom. This is primarily
due to actuator saturations and bandwidth and velocity limitation. A
coordination allowing a straight line motion of the end-effector with an
upper speed limit has been found to be a desirable behavior for this

type of tasks.
By rewriting equation (5.28) as

F* = —k, (% — %a); (5.29)
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where N
Xg = f(xg - X). (5.30)

F* can be interpreted as a pure velocity servo-control with a velocity
gain k,, and a desired velocity vector %x,. The desired velocity i1s a
linear function of the position error and for large motions the initial
velocity command will be very large, approaching zero as the desired
goal position is reached. The limitation on the end-effector velocity can
be obtained by limiting the magnitude of %4 at V.., while its direction
still points toward the desired goal position. The resulting control is

F* = —k,(% — vky); (5.31)

where

Vs

mar
g

[ %4

and sat{r) is the saturation function:

v = sat(

T if|lz|<1.0

sgn(z) if |z|> 1.0. (5.33)

saz) = |

and sgn(x) is the sign function.

This allows a straight line motion of the end-effector at a given speed
Vmaz. The velocity vector % is in effect controlled to be pointed to-
ward the goal position while its magnitude is limited to V,,,,. The
end-effector will then travel in a straight line with velocity 1,,,, except
during the acceleration and deceleration segments. This type of com-
mand vector is particularly useful when used in conjunction with the
gradient of an artificial potential field for collision avoidance.

5.3.4 Trajectory Tracking

For tasks where the desired motion of the end-eflector is specified, &
linear dynamic behavior can be obtained by selecting

F* = Loy ~ k(% — %a) = ky(x — x,); (5.34)

S
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where x4, X4 and Xy are the desired position, velocity and acceleration,
respectively, of the end-effector. &, and k, are the position and velocity
gains.

The above dynamic decoupling and motion control results in the fol-
lowing end-effector closed loop behavior

Trmoés + kyéy + Fpex = 0;

where
Ex = X — Xg.

5.4 Active Force Control

High performance control of end-effector motion and contact forces
requires the description of how motions along different axes are in-
teracting, and how the apparent or equivalent inertia or mass of the
end-effector varies with configurations and directions.

The operational space formulation provides a natural framework to ad-
dress the problem of motion and force control in an integrated manner,
allowing the development of a unified approach for the control of end-
effector motions and contact forces.

5.4.1 Task Description

In constrained motion operations, the motion of the end-effector is sub-
jected to a set of geometric constraints. These constraints restrict the
freedom of motion (displacements and rotations) of the end-effector.
It is clear that geometric constraints will affect only the freedom of
motion of the end-effector, since static forces and moments at these
constraints can still be applied. The number of degrees of freedom
of the constrained end-effector is given by the difference between mg
and the number of the independent equations specifying the geometric
constraints.
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An interesting description of the characteristics of end-effectors and
their constraints uses a mechanical linkage representation (Fournier
1980, Mason 1981). The end-effector, tool, or manipulated object,
forms, with the fixture or constrained object, a pair of two rigid bodies
linked through a joint. A constrained motion task can be described,
for instance, by a spherical, planar, cylindrical, prismatic, or revolute
joint.

However, when viewed from the perspective of end-effector control, two
elements of information are required for a complete description of the
task. These are the vectors of total force and moment that are to be
applied in order to maintain the imposed constraints, and the specifica-
tion of the end-effector motion degrees of freedom and their directions.

5.4.2 Generalized Selection Matrices

If £; is the vector, in the frame of reference Ro (O, X, Yo, 25), of the
forces that are to be applied by the end-effector. The positional free-
dom, if any, of the constrained end-effector will therefore lie in the
subspace orthogonal to fy.

A convenient coordinate frame for the description of tasks involving
constrained motion operations is a coordinate frame R;(O0,x;,yy, zf)
obtained from Ry by a rotation transformation described by S; such
that z; is aligned with f;. Figure 5.2 illustrates a task where the
freedom of motion (displacement) is restricted to the plane orthogonal
to f. ‘

In the coordinate frame R;, the position specificaticn matrix can be
defined as

g O 0
E_f = 0 Ty 0 '
0 0 o,

where o, '0y, and o, are binary numbers assigned the value 1 when a
free motion is specified along the axes Oxy, Oyy, and Oz, respectively,
and zero otherwise.

—
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Zy

Xp

Figure 5.2: A Constrained Motion Task

The directions of force control are described by the force specification
matrix X; associated with £; and defined by

—ff=f——2f;

where I designates the 3 x 3 identity matrix.

A similar specification matrix can be defined for tasks involving con-
strained rotations and applied moments. If 7; be the vector, in the
frame of reference Ro(OD, X0, Yo, 2Zo), of moments that are to be ap-
plied by the end-effector, and R, (O, %, V:,2,) is a coordinate frame -
obtained from Re(O, %o, ¥0,%e) by a rotation S: that brings z, into
alignment with the moment vector 74.

To a task specified in terms of end-effector rotations and applied mo-
ments in the coordinate frame _7_27, are associated the rotation/moment
specification matrices I, and X, defined similarly to Xy and Xy.

Tasks involving both position/force and orientation/mornent specifica-
tions, with respect to Ry, are described by the generalized task specifi-

cation tnatrices
57,8 0 -
g:( 12151 STE?ST); (5.35)
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and

=~ [(S§T%;S 0
Q:( s Df / or5 ST); (5.36)

associated with specifications of motion and forces, respectively.

) and § act on vectors described in the reference frame Ryp. A position
command vector, for instance, initially expressed in R; is transformed
by the rotation matrix Sy to the task coordinate frame R;. The motion
directions are then selected in this frame by the application of ;.
Finally the resulting vector is transformed back in Ry by S7.

For tasks specified with respect to the end-effector coordinate frame, the
generalized specification matrices can be similarly defined with respect
to that coordinate frame.

The generalized task specification matrices allow to realize the selection
process in the same coordinate frame (reference frame Ry) where the
manipulator geometric, kinematic and dynamic models are described.
This results in a more efficient implementation of the control system for
real-time operations. Control systems using specifications based only
on the matrices ¥y and X, will require costly geometric, kinematic,
and dynamic transformations between the reference frame and the task
coordinate frames.

5.4.3 Basic Dynamic Model

By the nature of coordinates associated with spatial rotations, oper-
ational forces acting along rotation coordinates are not homogeneous
to moments and vary with the type of representation being used (e.g.
Euler angles, direction cosines, Euler parameters). While this char-
acteristic does not raise any difficulty in free motion operations, the
homogeneity issue is important in tasks where both motions and active
forces are involved. This issue is also a concern in the analysis of inertial
properties. These properties are, in fact, expected to be independent
of the type of representation used for the description of the end-effector
orientation.

Lt
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The homogeneity issue is addressed by using the relationships between
operational velocities and instantaneous angular velocities. We have
seen that the Jacobian matrix J(q) associated with a given selection,
x, of operational coordinates can be expressed as

J(q) = E(x)Jo{a); (5.37)

where Jo(q) is the basic Jacobian defined independently of the partic-
ular set of parameters used to describe the end-effector configuration,
while E(x) is dependent upon those parameters. The basic Jacobian
establishes the relationships between generalized joint velocities g and
end-effector linear and angular velocities v and w.

92 ("] =Jola)a (5.38)

Using the basic Jacobian matrix, the mass and inertial properties at
the end-effector are described by

Ao(x) = J5T (@)Ala) o (a)- (5.39)

The above matrix is related to the kinetic energy matrix associated
with a set of operational coordinates, x, by

Ax) = ETT(x)A(x)E7H (x). (5.40)

Like angular velocities, moments are defined as instantaneous quanti-
ties. A generalized operational force vector F associated with a set of
operational coordinates, x, 1s related to forces and moments by

Fo 2 [fd] = ET(x) F; (5.41)

where F and M are the vectors of forces and moments. With respect
to linear and angular velocities, the end-effector equations of motion
can be written as

Ao(x)ié + po{x, %)+ po(x) = Fo; (5.42)

i
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where Ag(x), po(x,¥), and py(x) are defined similarly to A(x), u(x, %),
and p(x) using Jo(q) instead of J(q). In Eq. {5.42), the dynamics of
the end-effector is described with respect to linear and angular veloci-
ties. Therefore, a task transformation of the description of end-effector
orientation is needed. Such a transformation involves the inverse of
E(x) and its derivatives.

5.4.4 Orientation Transformation

Let x, be the set of parameters selected to represent the end-effector ori-
entation. Let x,4 designate the desired crientation of the end-effector.
Assuming that x,4 is closed to x,, the orientation error can be repre-
sented by the vector

8T, = X; — X,q. (5.43)

We have seen that the time derivative of x, is related to the corre-
sponding angular velocity vector w by

%, = E,(x,) w. (5.44)

Replacing velocities by elementary rotations, yields
o, = E (x,) 6P {5.45)

where 0@ is the 3 x 1 vector of elementary angular rotation which
corresponds to the error between the current orientation of the end-
effector and the desired orientation described by x,q4.

Using the left inverse of E,., the instantaneous angular error correspond-
ing to the error between the actual orientation of the end-effector x,
and the desired orientation X,;4 can be written as

6% = EF(x,) 6x,; {5.46)
Taking the time-derivative of equation (5.44) yields
%, = B (%) & + E.(x,) w. (5.47)
The inverse of the acceleration reiationship is

w = Ef (%) % — EF (%) Er(x,) w. (5.48)

e, ;.LA.Y“‘:MWM._.“. :
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(Goal-Position Given a desired position and orientation vector x4 =
(>4 xI,)7; the input of the decoupled end-effector can be selected as

F' = —kp(Xp — Xpa) — kyXy;

and
M=k 6D~k w;

where
6% = E7(x%,) (%X, — Xrq).

The closed loop behavior is
Xp 4 koXp + Ep(Xp — Xpa) = 0;

and
w+ kyw + k00 = 0.

Trajectory Tracking In this case, the input of the decoupled end-
effector can be selected as

Fr= ipd - kp(xp - xpd) - kv(ip - 3::pci)Q

and
M*Zu:'d“kp 5@—!’% {w—wd);
where
Wd = E:-(xrd) J:’:rd;
and 5

djd = Ej(xrd) j&rd - E?(de)ET(x?d) W.

The closed loop behavior is

(Xp — Xpa) + ko(Xp — Xpa) + kp(Xp — Xpa) = 0;

and
(@~ wa) + kyw — wa) + k60 = 0.
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Direction Cosines

With the direction cosines representation, the end-effector orientation
is described by the 9 x 1 column matrix

(T T I\T
xr = (5] 53 83)
The desired orientation is given as
T sT)T

T
Xrq = (S14 Syg Sig

We have seen that the left inverse in this case is simply given by

1
EF = ZET;
T 2 1

where

Ef (%)= (-5 -8 -35).
This yields
¢ = %E;:P(x,)(x, — Xrg);

Since

T . - ~
E; (%)%, = 818 + 8387 + 5383 = 0;

the angular rotation error is

. 1 ~ -
6P = —i(slsld - 84894 + 5353d). (549)

5.5 Unified Motion and Force Control

Part mating operations involve motion control in some directions and
force control in orthogonal directions.

e
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Figure 5.3: A Mass/Spring System

5.5.1 A Mass Spring System

et us consider for instance, the problem of controliing the contact
forces of a one-degree-of freedom manipulator acting along the direction
z using a force sensor. The dynamic behavior of this end-effector/sensor
system can be modeled as a simple mass, m, and spring, k,, system, as
shown in Figure 5.3.

The dynamic model of the end-effector/sensor system is
mit+ksz=F;

1

where f represents the control force along the z direction. The mea-
surement of contact forces at the sensor is

fo= ksz.

This allows to rewrite the dynamic model of the mass /sensor system as

m-kl—sfmfs*—"f-
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Based on this model, force contral can be achieved by selecting

F="tfa=mlks (fo~ fa) + ko, fol; (5.50)

and the closed loop behavior is given as

fot bk, fo+koky (Fo— fa) = 0.

5.5.2 End-Effector/Sensor System

For a multi-linked manipulator, the end-effector /sensor equations of
motion can be written as

Using Eq. (5.42), the end-effector/sensor equations of motion can be
written as ) _
Ao(x)0 + po(x, ) + po(x) + 0IF, = F,. (5.51)

The vector (IF, represents the constraint forces acting at the end-
effector. The unified approach for end-efector dynamic decoupling,
motion and active force control is achieved by selecting the control
structure

Fog= Fotion + Factive—force; (552)

where

Fmotion = KU (X)QF:nozion + EO (X, 19) + 130(}:); (553)

Fa,ctive—for:e = AG (X)QF:,ctive——fgrce + QFd&sireda' (5-54)

where, fxg(x), Ho(x,x), and Po(x) represent the estimates of Ap(x),
po(x,x), and ps(x). The vectors F ..~ and F i tive_force TEDTESENE the

inputs to the decoupled system. The generalized joint forces T required
to produce the operational forces Fg are

I = J3{q)Fp. (5.55)

With perfect estimates, the resulting closed loop system is described
by the following two decoupled sub-systems:

Q'ﬂ = ‘QF:nction; (556)
ﬁ(ﬁ’{"Fa) = ﬁ(I?':ie:!il'tﬂ-'i"*‘F:cti\.-s,--—z'orc:e)' (5'5?)
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Figure 5.4: Unified Motion and Force Control Structure

The unified motion and force control system is shown in Fig. 5.4.

To further enhance the efficiency of the real-time implementation, the
control system is decomposed into two layers — a low rate dynamic
parameter evaluation layer, updating the dynamic parameters, and a
high rate servo control layer that computes the command vector using
the updated dynamic coefficients. This is achieved by factoring the
equations of motion into the product of a matrix with coefficients in-
dependent of the velacities, and a vector which contains the velocity
terms. The matrix of coefficients is then given as a function of the
manipulator’s configuration. The joint torgues corresponding to the
end-effector centrifugal and Coriolis forces are

JT (a)io(x,9) = Bo(a){gal;

where By(q) is the n x n{n + 1)/2 matrix

By

(@) = B(a) — J; (@) Ae(q) Hola);

(5.58)

(5.59)

with Hg(q) defined as in equation (5.16) using the basic Jacobian,

Jo(‘l)-

With this separation of the velocity and configuration dependency of
the dynamics, the real-time computation of the equations of motion
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coeflicients can be paced by the rate of configuration changes, which is
much lower than that of the mechanism dynamics.

5.5.3 Impact Transition Control

Stability during impact is critical in force controlled operations. An
effective strategy for the control of the end-effector during transition
from free to constrained motions is based on a pure dissipation of the
energy after impact. The operational command vector during the im-
pact transition control stage is

Factive——force = —kvf AD (Q)ﬁFsensed .

The duration of the impact transition control is a function of the im-
pact velocity and the limitations on damping gains and actuator torques
(this duration is typically in the order of tens of milliseconds). A sim-
ple force threshold scheme can be used for the implementation of this
impact transition control.
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Chapter 6

Redundancy and
Singularities

A manipulator is said to be redundant when the number, n, of its
degrees of freedom is greater than the number, m, of its end-effector
degrees of freedom. In this definition, redundancy is a characteristic of
the manipulator. The extent of the manipulator redundancy is given
by (n —m), which defines the manipulator degree of redundancy.

In manipulation, there is also task redundancy. This type of redun-
dancy is associated with tasks that involve a subset of the parameters
needed to describe the configuration of the end-effector. This redun-
dancy concerns all types of manipulators. For instance, positioning the
end-effector of a non-redundant manipulator results in a redundancy
with respect to the task of controlling the end-effector position.

A manipulator is said to be redundant with respect to a task if the
number, MTask, Of independent parameters needed to describe the task
configuration is smaller than the number n of the manipulator degrees

of freedom.

77
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6.1 Redundant Manipulators Dynamics

A set of operational coordinates, which only describes the end-effector
position and orientation WOusly insufficient to compiete}y specify

\thgconﬁgurat1on of a redundant mampulator Th herefore ‘the dynamxc _

“_behavior of the entiré system cannot B described by by a dynamic model

using operational coordinates, Nevertheiess “the dynamsc behavxm
\v,__ Eeend—effector itself can still be descrlbed and and its eguatmng,of.mqjmn i

in operatmnal | space can stzﬁ be estabhshed In fac fact, the structure of the

effector dynamic model has been sﬁagm(khatlb 1980, Khatib 1987} to
be 1dent1fcai to that obtained in the case of non-redundant manipulators
(equatlon 5.6). In the redundant case, however the “matrix A sh should

be interpreted as a pseuda Eznetmc energy matnf’ "As shown below, |
This matrix is Telated fo the jolnt space kmetlc energy matrix by

T e

A = J@4™ (a7 (@) 1 (6.1)

e
I = —

S |

ot

The above relationship prowdes a general expression for the matrix
M N S e o s
g_jﬂa;t_,gpﬁgggsﬂ t5_buth redundant and no -redundant mampulators
While equation (5.6) provides a description of the whole system dy-
namics for non-redundant manipulators, the equation associated with a
redundant manipulator only describes the dynamic behavior of its end-
effector, In that case, the equation can be thought of as a “projection”
__of the system’s dynamzcs into the’ operatzonal _space. The The reminder.of -
the ‘dynamics will | affect Jomt motions in the nu ,1_5,19?;‘39 of the redundant
e e T e S T

_System. This analyszs is discussed below, e

The operational space equations of motion describe the dynamic re-
sponse of 2 manipulator to the application of an operational force F
at the end-effector. For non-redundant manipulators, the relationship
between operational forces, F, and joint torques, I' is

I' = J7(q)F. (6.2)

{ \ However, thls relatlonshlp becomes incomplete for redundan; manipu-

{ lators ‘that_are in motion, MSis of the kinematic aspect M- i
dancy shows that at a given conﬁvuratzon there is an mﬁmty of eIemen— E

tary dlsplacements of the redundant mechamsm that couid tz{ke place

N e SUR e " B
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. without altering thg_rg_oqﬁrrurat]ou of the effector. Those displacements

correspond fo motion in the null space associated with a generalized
inverse of the Jacobian matrix.

(T here is also a nuli space associated with the transpose of the Jacobian )

e

(matrix, When the redundant mampulator is not at static ethbrmm
Wmﬁmt} of Jomt &que e vectors thatvguld be ap%lthoyj )
\_effecting.the.resulting fc forces .3t the end-effector, “Thése are the joint
A,
\;p\rgg%tmg_mthm /ti)e null space of :fT( ) With the addition of ™
null space joint torgues, “the relationship between end-effector forces
and mampulator joint torques takes the following general form

1‘{’7 ﬁccnm[f i wu}re,j) ©3)
g\"i*—-»-

where I'g is an arbztrary generahzed 301nt torque vector, which will be
projected in the null space of J7, and JT¥ is a generalized inverse of
JT. Clearly, equation (6. 3) is dependent on JT and there is an infinity

.......

We start by applying to the manipulator system (4.13), a joint torque
vector in the general form (6.3). To establish the relationship between
operational acceleration and operational force, we pre-multiply equa-
tion (4.13) by the matrix J(q)A~(q), and use the relationship between
joint acceleration and operational accelerations (% — J{q)a = J(q)@)-
The resulting equation can be written as

% + (J(@A  (Q)bla, ) - J(@)a) + /(@4 (@)gla) = 1
(J(@A™ (@I (@) F+ J(@47 (@) [[ = T (@™ (@)] To- (6:4)

This equatmn expresses the relationship between % and F. the matrix
(J (q}A™? (q)) which pre-multiplies F is homogeneous to the in-
verse of a kmetm energy matrix. This inverse, which exists everywhere
outside kinematic singularities, is the pseudo kinetic energy maotriz of

equation (6.1)

Alg) = (J@A @I
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In addition, equation {6.4) shows that in order for the joint torques I'y
to be precluded from producing any dynamic effect at the operational
point, it is necessary that, s B

e A P N 3 1 e P A

T

— ]

\i(qm-‘(q) - QI <q>] Ty =0.
et )

A generalized 1nverse of J(q) satxsfwncr ‘the above Constraint s said to
be dynamically consistent (Khatib 1990).
SR

(6-5)

Theorem 1: (Dynamic Consistency)

A generalized inverse that is consistent with the dynaemic
constraint of equation 6.5, J{(q), is unique and is given by

J(q) = A™Hq)J (q)A(a), (6.6)

The proof is based on a straightforward analysis of equation
(6.5).

Notice that J(q) of equation (6. 6) is actually the generalized inverse of

the Jacobian matrix.corresponding to the solution of §x = J(q )5q that

R S e

minimizes the manlpuiator si stantaneous kmetsc energy, thxs 5. .
D i oy
6q = Jox+[I -7 J] équ.

6.1.1 Equations of Motion /%7 ’?4“, >
Now, the end-effector equations of motion for a redundant manipulator
can be obtained by using the dynamically consistent generalized in-
verse in equation {6.6) and pre-multiplying this equation by the matrix
A(q). The resulting equations are of the same form as equations {5.6)
established for non-redundant manipulators. In the case of redundancy,
“however, the mema} properties vary not only}vﬁthThe end- eﬁec‘cor con-

it B e

\ji_g_gratlo_npp__u_t/g_lﬁ,o w1tf1 the mampulator posture

T

AlQ)% + p(q,q) + p(q) = F; (6.7)

RO,
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where

dad) = Fablad-A@i@s 69
pla) = J (9)g(q).

Equations (6.7) provide a description of the dynamic behavior of the

end-effector in operational space. These equations are simply the pro-

jection of the joint space e equations of motlon 4.13], by the dynamically
T . SR,

Weraﬁzed inverss J (q)

77 (q) [A(Q)a +b(a,a) + g(a) =T] = A(Q)¥+ua.q )+p(q>( A
6.1

6.1.2 Torque/Force Relationship

The dvnamically consistent relationship between joint torques and op-
erational forces for redundant manipulator systems is

= JT(Q)F + [I - I(@)7 ()] To; (6.11)
This relationship provides a decomposition of joint torques into two

dynamically decoupled control vectors: joint torques corresponding to
forces acting at the end-effector (JT F) and joint torques that only

et e o e e R e

Using this decompomtlon the end-effector can be controlled by oper-
ational forces, while internal motions can be independently controlled..~”
by joint torques that, are guaranteed not to alter the end-effector’s dy- -
wha\nor This relationship is the basis for 1mplement1ng the
dextrous dynamic coordination strategy for macro-/mini-manipulators

discussed in section 8.3.

With the relationship (6.11), the force/position duality for non-redundant
manipulators can be extended to the case of redundant manipulators
as summarized in Table 1.
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Table 6.1: Position/Force Duality

Position Force ?
(*} |d4q = JPéx ' =J'F l,,
(*)|éq = T sx+[I-TJ g |T = FF+[I-JFT | T

(*) non-redundant manipulators, {**) redundant manipulators

6.1.3 Stability Analysis

Dynamic decoupling at the end-effector of a redundant manipulator

and the control of its motion and contact forces can be accomplished

with the very same operational control structure used for the effectors

of non-redundant manipulators. However, operational control forces

zlone cannot provide asymptotic W
G L

R
manzpulamymptomc H‘itablhzatlon of the redundant system re-

et s P e g map i
_qiirgs the wse of additional dissipati t |
uires the use of additional dissi Ivem%.

m___,.,a"\.__*_--""‘w-.a‘
First, let us assume that the end—effector is simply subjected to the

gradient of the attractive potential

1
Ugoai =3

zkp(x - Xgoa&)T(X - xgoal);

and to a dissipative operational force
Fas = —k,x; !

where &k, and &, are positive constants. The gravity of the manipulator ;
is further assumed to be compensated for. In these condition, the : L
Lagrange equations for the controlled system are

d 8T, BT — Ugn)

a'5g)~ " g

df = Fdis; (612)

where
L = =k, JT(Q)%.

e
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Using the relationship between joint velocities and operational veloci-
ties the dissipative torques I'y, can be written as

Lgiy = —kuJT(Q)J(Q)Q-

Since all non-dissipative forces in this control design are conservative,
the stability condition is

IT,a<0; forq#0; (6.13)

or
-q"D{a}g < 0; for ¢ #0;

where

D(q) = k.{J7 (q)J(q)].

This condition is satisfied, since D(q) is an n X n positive semi-definite
matrix of rank mg. However, the redundant mechanism can still de-
scribe movements that are solutions of the equation

4" D(q)q = 0.
Asymptotic stabilization requires
T3,4<0; forg+#0. (6.14)

This can be achieved by the addition of joint dissipative torques (—k,,q).
The vector of total dissipative torques becomes

Pdis = _kuJT(q)J(q)q - kqu-

The matrix D(q) corresponding to the new expression for the dissipa-
tive joint forces becomes

D(q) = kJ" (@)@} (Q) + kugln;
where I, is the identity matrix of order n. Now, the matrix D{q) is
positive definite and the system is asymptotically stable.

Let us now consider the case where operational space dynamic compen-
sations are used. The operational dissipative forces are (—k,A(q)x},
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JE—

and the corresponding joint torques are (—k,J7(q)A(q)J(q)q). To ac-
count for the manipulator dynamics, the additional dissipative torques
that are needed to asymptotically stabilize the internal motions will i
be weighted by the joint space kinetic energy matrix A(g), this is

—kyyA(q}q). To prevent disturbances at end-effector, these torques
must be selected from the dynamically consistent null space. The total
dissipative torques are

Tais = =k J (@A(Q)T(q)a + [T — J7(Q)T ()]~ kA (a)dl;
which can be written as |
Lais = —4" D(Q)4; -

with

D{a) = [(ky ~ k) J" (@) A(Q) T () + kug L.
With an appropriate selection of k, and kyq, the matrix D{q) is positive
definite and the redundant manipulator is asymptotically stable.

ST H

.

6.1.4 Singular Configurations

A singular configuration is a configuration q at which the end-effector ;
mobility ~ defined as the rank of the Jacobian matrix - locally decreases. e
At a singular configuration, the end-effector locally loses the ability to i
move along or rotate about some direction of the Cartesian space.

Singularity and mobility are characterized by the determinant of the Ja-

cobian matrix for non-redundant manipulators; or by the determinant

of the matrix product of the Jacobian and its transpose for redundant

mechanisms. This determinant is a function, s(q), that vanishes at

each of the manipulator singularities. This funcmon can be further.
e Nl

M et

developed into a roducz of terms, . *‘
\'\-/\./“-«E\_ﬁ_ﬁ _,—"*-.,,yp !

s{a) = s1{q) - s2(q) - sa(q) ... 55, (q); (6.15)

3 i

each of which corresponds to one of the different types of singularities L
associated with the kinematic configuration of the mechanism, e.g.,
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alignment of two links or alignment of two joint axes. n, is the number
of different types of singularities. To a singular configuration there
corresponds a singular direction. wut this direction that
the end-effector presents mﬁmte effectlve mass oI eﬁ_gg_m _'I‘he' )

. S 3 i R Tt

\J‘—Ci—w In reahty, the difficulty with smgular1t1es extends to some
neighborhood around the singular configuration, as illustrated in Fig.
(6.1}. The nelghborhood of the i*h smgulantv 'D,‘, can be defined as

RSt WL

N o SUNTL L

Dy, = {allsi(a)} < mk; (6.16)

et T e e

=,

Figure 6.1: Kinematic Singularities

where 7; is positive. The basic concept in our approach to end-effector
control at kinematic singularities can be described as follows:

In the neighborhood D, of a singular configuration g, the ,

T — e i

\mt’reated as a redandant system in the sub-__
Space\orthogonal o the singular direction. End-effector mo-
tions int that subspace are controlied using the operational
space redundant manipulator control. s; is treated as a new
task coordinate. This coordinate is used in the control of
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end-effector behavior along the singular direction. Jhe conz—

trol is implemented usmg\“ﬂl}i Pmﬁﬁi}ly consistent joint .
torques acting in the nu spacqassouated with the redun-

I i T o i S, i

\dancy

Moving the end-effector to a singular configuration, for instance, is

achieved by a control that takes s;(q) to zero. One strategy for moving
\Mﬁector out of a 31gc:u1§r1tv is to control the rate of s:i(q).
~JWith the two posmEIe ‘assignments giﬁhg s1 gn for the de31red rate of -

Sy gyt

\ﬁi-(qlv -t is poss1b1e to celect _the posture “of the rﬁan*pniator amon:r

R T BY g T T A Pt sty s

the two. cwﬁguratmns that 1‘5 ‘can generaily take when moving out of a a .

ot o,

. smgularztv "The Tate of 5; ( ) should be selected a acgc;;élng to the desired
velocCity at the configuration when [s;(q)} = 7, in order to achieve a
~.smooth transition when crﬁo’§§1_ng the singularity ne1ghborhood o
2 e e

. - L — J——
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Chapter 7

Inertial Properties

The inertial properties of a manipulator are generally expressed with
respect to its motion in joint space. For an n degree-of-freedom manip-
ulator, the joint space inertial properties are described by the kinetic
energy matirx, A(q). When the dynamic response or impact force at
some point at the end-effector or manipulated object are of interest,
the inertial properties involved are those evaluated at the operational
point. The operational space kinetic energy matrix A(x) provides a de-
scription of the inertial properties of the manipulator at the operational
point,

7.1 Task Redundancy

The analysis of dynamic behavior for a task that involves task redun-
dancy is identical to that of redundant manipulators. The dynamics
associated with a task are described by a system of equations similar
to (6.7). When analyzing the inertial properties of manipulators, two
distinct types of tasks are examined: end-effector translational tasks
and end-effector rotational tasks.

B7
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Ro
y
T
z
(b)
Ro
Y
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Figure 7.1: Effective Mass (a) and Effective Inertia (b)

First, let us consider the task of positioning the end-effector. The
Jacobian in this case is the matrix, J,{q), associated with the linear
velocity at the operational point. The pseudo-kinetic energy matrix is:

A;H@) = (@A™ (@), (q)- (7.1)

The matrix A7!(q) provides a description of the end-effector transla-
tional response to a force. Consider for instance the task of positioning
the end-effector along the y-axis, as illustrated in Figure 7.1-a. The Ja-
cobian associated with this task reduces to the row matrix J,, (q). The
pseudo-kinetic energy matrix in this case is a scalar, m,, representing
the mass perceived at the end-effector in response to the application of
a force f, along the y-axis: :

Lo, (@A (@I ().

My
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7.2. EFFECTIVE MASS/INERTIA 89

For rotational tasks, the Jacobian involved is the matrix J,{q) associ-
ated with the angular velocity measured about the different axes of the
operational frame. The pseudo-kinetic energy matrix is:

AZHq) = J(@)A Q)] (a)- (7.2)

The matrix A7 (q) provides a description of the end-effector rotational
response to a moment. Consider now the task of rotating the end-
effector about the z-axis, as illustrated in Figure 7.1-b. The Jacobian
associated with this task is the row matrix J,, (q). The pseudo-kinetic
energy matrix in this case is a scalar, I, representing the inertia per-
ceived at the end-effector in response to a moment I'; applied about
the z-axis:

- = L. (@47 @I, (@

z

7.2 Effective Mass/Inertia

The overall inertial properties associated with general motion of the
end-efector can be examined by analyzing the matrix

hola) = (D(@) 4™ (@TT (@)

where Jy(q) is the basic Jacobian associated with the end-effector lin-
ear and angular velocities. Using this matrix, Asada (1983) proposed
the generalized inertia ellipsoid as a geometric representation for the
inertial properties of a manipulator. An alternative to the ellipsoid of
inertia is the ellipsoid of gyration suggested by Hogan (1984). This
ellipsoid is based on the analysis of the matrix, Ay Y(q), whose exis-
tence is always guaranteed. The eigenvalues and eigenvectors of the
matrix Ag(g) were used in combination with the hyper-parallelepiped
of acceleration in the design of manipulators aimed at achieving, the
smallest, most isotropic, and most uniform inertial characteristics; and
the largest, most isotropic, and most uniform bounds on the magni-
tude of end-effector acceleration (Khatib and Burdick 1985, Khatib

and Agrawal 1989).
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The eigenvalues associated with the matrix Aq(q) or its inverse A7'{q)
provide a useful characterization of the bounds on the magnitude of the
inertial properties. However, these eigenvalues correspond to eigenvec-
tors in a six-dimensional space that combines translational and rota-
tional motions and are difficult to interpret.

We have seen that the end-effector translational response to a force
and its rotational response to a moment can be characterized by the
matrices A7'(q) and AJ!(q), respectively. These two matrices have
been established separately by considering pure translational motion
tasks and pure rotational motion tasks.

Consider again, the matrix (J@(q)A'l(q)Jg(q)) expressed in terms of

the matrix 47'(q) and the basic Jacobian Jy(q). The basic Jacobian
matrix can be written as

Ju(q)
J = [ ? }; 7.3

olq) Jo(q) (7.3)
where J,(q) and J,(q) are the two block matrices associated with the
end-effector linear velocity and its angular velocity, respectively. Using
this decomposition, the matrix A~!(q) can be written in the form

A7Ma) KW(Q)} ,

A q) = [ ; (7.4)

Aw(d) AZY(q)

where Ay(q) is the matrix given in equation (7.1) and A,(q) is the
matrix given in equation (7.2). The matrix A,,(q) is given by

Awsla) = L(a) A~ (@) I (q).

The matrix A,(q), which describes the end-effector translational re-
sponse to a force, is homogeneous to-a mass matrix, while A, (q); which
describes the end-effector rotational response to a moment, is homoge-
neous to an inertia matrix. The matrix A,,(q) provides a description
of the coupling between translational and rotaticnal motions.

Starting from rest, the end-effector translational and rotational inertial
properties along or about a direction described by a unit vector u can
be characterized by:

&2
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Figure 7.2: Effective Mass/Inertia (Ellipsoid Representation)

~

The effective mass perceived at the end-effector operational point along
s direction u. The inverse of the effective mass is equal to the
component of the linear acceleration along the direction u that
results in response to a unit force applied along u. This is

1
mu(Q)

=u’ A7 (Q)u;

The effective inertia perceived at the end-effector about the vector u.
The inverse of the effective inmertia is equal to the component
of the angular acceleration about the direction u that results in
response to a unit moment applied about u. This is '

L
Is(q)

Asillustrated in Figure 7.2, one possible representation of the mass/inertial
properties associated with the two matrices A7 1{q) and AS'{q) is to
use the two ellipsoids:

VIATHq)v=1; and vIAZHqv=1.

v

=uT A} (q)u.
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Figure 7.3: Construction of Belted-Ellipscids from Ellipsoids

However, ellipsoid representations only provide a description of the
square roots of effective mass (inertia) in (about) a direction.

7.3 Belted-Ellipsoid

We now introduce a new geometric representation that characterizes
the actual magnitude of the effective mass (inertia) in (about) a di-
rection. 'This representation is based on what we have termed, the
belted-ellipsoid. A belted-ellipsoid is obtained by a polar transforma-
tion of an ellipsoid. A point on the ellipsoid surface is transformed to
a point located along the same polar line at a distance equal to the
square of the initial point distance. This construction is illustrated in
Figure 7.3.

A point on the ellipsoid represented by a vector v is transformed into
a point on the belted-ellipsoid represented by a vector w. The vector
w is collinear to v and is of a magnitude equal to v7'v, That is

w = ||vijv.
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Figure 7.4: Examples of Belted-Ellipsoids

The equation of a belted-ellipsoid can, therefore, be obtained from the

equation of an ellipsoid by replacing the vector v by the vector ii\‘:lt'

The equations for the two belted-ellipsoids corresponding to the two
matrices A;1(q) and AZ'(q) are!

T T
Y ATQ) |—| =1 and || AT | =1
nvn} | {C‘)[ HvlJ { nvn} o L/M}
(7.5)

Two examples of belted-ellipsoids are shown in Figure 7.4.

For a redundant manipulator, the inertial properties perceived a‘é a
given position and orientation of the end-effector vary with the ma-
nipulator configuration. This is illustrated for the effective mass in
Figure 7.5 vsing belted-ellipsoids.

2 2 2 2 2
1 H H z Y z — T U
An ellipsoid &Z + & + & = 1 becomes PN + N AT

L2

e e R B

2y felylezl
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Figure 7.5: Effective Mass of a Redundant Manipulator
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Chapter 8

Macro-/Mini-Manipulators

A macro-/mini-manipulator can be viewed as the mechanism result-
ing from the serial combination of two manipulators. As illustrated
in Fig. 8.la, the manipulator connected to the ground is the macro-
manipulator, and the second manipulator, referred to as the mini-
manipulator. is the structure formed by the distal set of links that
have full freedom to move in the operational space.

The macro-manipulator has ny degrees of freedom and its configu-
ration is described by the system of nys generalized joint coordinates
qu. The mini-manipulator, has n,, degrees of freedom and its config-
uration is described by the generalized coordinates Gpm. The resulting
structure is an n-degree-of-freedom manipulator with n = ny + 7im.
Its configuration is described by the system of generalized joint coordi-
nates q = {q{, q";]T. 1f m represents the number of effector degrees of
freedom of the combined structure, s and ng, must obey

nuy 2> 1 and ny = m. (8.1)

That is the rmini-manipulator has the full freedom to move in the op-
erational space and the macro-manipulator has at least one degree of
freedom.

95
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} MINI-
MANIPULATOR

(b)

MAcCRroO-
MANIPULATOR

[ 4

(a)

1
&

Figure 8.1: A Macro-/Mini-Manipulator System

8.1 Kinematics of Macro-/Mini-Structures

The configuration of the macro-manipulator is described with respect
to a reference frame Ry and the configuration of the mini-manipulator
structure is described with respect to a frame R)s attached to the
last link of the macro-manipulator. The coordinate frame associated
with the operational point, is denoted by Rg. Let Spy{qa) be the
transformation matrix describing the rotation between the frames Ry
and - Ro. Let pjys be the vector connecting the origins of frames R and
R, and p., the vector connecting those of Ry and Re. The position
of the operational point, with respect to R, is described by the vector

P =DPM -+ Pm

If vas and wyy represent the linear and angular velocities at the origin
of frame R, attached to the last link of the macro-manipulator, the
linear velocity at the operational point is

V=Vuy+ Vet X Pn;

PR et
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Figure 8.2: Kinematics of a Macro- /Mini-Manipulator System

where v, represents the linear velocity at the operaticnal point due
o the motion of the mini-manipulator. The angular velocity at the

end-effector is
W == Wiy -+ W

Thus, the linear and angular velocities at the operational point ex-
pressed with respect to the reference frame 7o are

M I I e
= -+ ;
wimgy 01 wMlirey L0 Sullemli,,

where Do) is the cross product operator associated with the position

VeCtor Prmyoy and expressed in Rg. If Juioy(aa) and Jm(oy(am) are the
basic Jacobian matrices associated with two individual manipulators,
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the basic Jacobian matrix associated with the serial combination can
be expressed as

Jo=[VIuwey Umayl; (8.2)
where I R s 0
_ —Pm(o) |. _PM
V—[D T }, and Qm[ 0 SM} (8.3)

8.2 Dynamics of Macro-/Mini-Structures

The kinetic energy matrix, A{q), of the combined system can be de-
composed in block matrices corresponding to the dimensions of the two
manipulators’ individual kinetic energy matrices

A= [4F 48] (5.4

Lemma 1:

The nm X Ny, joint space kinetic energy matriz, Am, of the
mini-manipulator considered alone is identical to the matrix
Az of (8.4).

Proof: The kinetic energy of the combined macro-mini-
manipulator is

) 1, )
T(q,q) = §qTAq-

The kinetic energy associated with the mini-manipulator
considered alone is :

1
T, must be identical to T{q, q)|g,, =0,

AT 1] An AmHO]_E-T -
T(QaQ)!QM=5—' [D qm][‘,ﬁ; Age Gom _QQmAZQQma

& AmGm.

2
which implies the identity between A,, and A,,. O

The operational space pseudo kinetic energy matriz Ap associated with
the linear and angular velocities is defined by (JoA~1JZ)"1.
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Lemma 2:

The operational space pseudo kinetic energy matrix Ap as-
sociated with the macro-/mini-manipulator and the opera-
tional space kinetic energy matrix Aoy associated with the
mini-manipulator are related by

A = QAL +Ac; (8.5)
where

A= V- QI Ay An) (A — -451A521A21)_1
(VI — QIn Az An)". (8.6)

Proof: The proof is based on a special matrix decompo-
cition of the kinetic energy matrix A. A is a symmetric
positive definite matrix. The sub-matrix Az, is nonsingu-
lar. Therefore, the matrix A can be decomposed as (Golub
and Van Loan 1983)

I ALAZ[An— AL AR An O I 0

0 I ] [ 0 A22] [Az—zlfizz I}'

a-|
(8.7)

The matrix AZ' is

I 0717 (A — AL AR A)™F 0 ]
[VJM QJm]{:_Aé-zlAzl I:l[ 0 A2_21
[I ~A§1A5§] [JK;VT] (38)
0 I JEQT [PV

Substituting A, for A, in the above expression yields equa-
tions {8.5 and 8.6). O

Theorem 2: (Reduced Effective Inertia).

The operational space pseudo kinetic energy matrices Ap
(combined mechanism), and Am(0) (mini-manipulator) sat-

15fy

A.'c(AO) < )‘k(Am(O)); k= 1)2: SRR (89) ‘
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where M () denote the k" largest eigenvalue of (-), i.e.,
M) S S (). : |

—

o=

Figure 8.3: Inertial Properties of a Macro-/Mini-Manipulator

The magnitude of the irertial properties of the macro-/mini-manipulator
system shown in Figure 8.3, at any configuration and in any diréction,
are smaller than or equal to the inertial properties associated with the
mini-manipulator.

Proof: The proof of this theorem involves the following two
steps:

Step 1: (Eigenvalue Relationship) To establish a rela-
tionship between the eigenvalues of Ap and Any, we resort
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to an important property of symmetric matrices. it is pos-
sible to show that (Golub and Van Loan 1983): If M and
M+E are n x n symmetric matrices, then fork=1,2,...,n

A(M) + () € MM + E) £ Xe(M) + X (B);

Applying this relation to equation (8.5) for k=1,2,...,m,
and noting that Amgo)y and QAm)Q7 are similar positive

definite matrices with identical eigenvalues 1/A{A j0,), yields

1 < MelAo) o 1

14+ MAe)  MlAmio)) T MeAmey) T 1+ MlAe) - )Ek(Am{G))‘
8.10)

Step 2: (Non-Negative definition of Ac). Letting B be
the matrix

VR

B = (Vi — QnAzfAn) (An — AL AR An) 7% (811)

T

The matrix Ac of equation (8.6} can be written as
Ac = BBT;

which implies that A is non-negative definite. Substituting
this result in equation (8.10) completes the proof of the
theorem. U1

The reduced effective inertia result obtained for the matrix Ay also
applies to the matrices A, and A,. The matrix A, can be obtained

1% from Ap by replacing the Jacobian Jy by the matrix
J,=[I 0]J.

Using equations (8.3), the decomposition of equation (8.5) takes the

form o
AT = SpALL, She + Ao

m(v)

g Ay G Y R

S

VL

0T

AR
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where S e
- — 71
Row = (1 G)AC(D).

This shows that like Ag, the matrix KC(,,} is a symmetric, thus non-
negative definite. The same procedure can be applied to A, using

JMZ[O I]J{)

Corollary 2.1: (Reduced Effective Inertia).

The pseudo kinetic energy matrices A, and A, (combined
mechanism), and Ampy and Apm) (mini-manipulator) sat-

15fy

}\k(-"\u) S /\k(Am(u))§ and Ak(Aw) S /\k(Am(u)); k= 1,2,...,m;
(8.12)

Example: (A three-degree-of-freedom manipulator) Let us consider
the three-degree-of-freedom manipulator shown in Figure 8.4. This
manipulator is redundant with respect to the task of positioning the
end-effector. In this example, the mini-manipulator portion involves
two degrees of freedom, n,, = 2, and the macro-manipulator portion
has only one degree of freedom, ny = 1.

With respect to frame R, the Jacobian associated with the end-effector
position takes the simple form ‘

=% 1 0].
Ty = gy

The joint space kinetic energy matrix is
I+migs +molgs +¢3) —gama gy

Alqg) = —MN;yqs mi+m, 0 |;
202 R

T
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where I is the inertia of link 1 about joint axis 1 and where m; and mg
are the masses of link 2 and link 3. The kinetic energy matrix, Am),
associated with the 2-degree-of-freedom mini-manipulator is

Mg + My 0
Am) = [ 0 mz]'

In frame R, The the kinetic energy matrix, Ao associated with the
3-degree-of-freedom macro- /mini-manipulator is

Ay = ma+myxn 01
(1) — 0 mo 1
where
= I+m1q§
IT+mi(gd+a3) ~

The inertial properties of the macro-/mini-manipulator and the mini-
manipulator are illustrated in Figure 8.4. The belted-ellipsoids shown
on this figure correspond to the eigenvalues and eigenvectors associated
with the matrices Agny and Amo)-

With respect to frame Ko, the the kinetic energy matrix, Ag 1s
Ay = QAO(l)QT; -.

where
— cos{q) " —sin(g1)
= [sin(ql) 'cos(ql) ]

A more general statement of Theorem 2 is that the inertial properties
of a redundant manipulator are bounded above by the inertial properties
of the structure formed by the smallest distal set of degrees of freedom
that span the operational space. The equality of the inertial properties
in Theorem 2 is obtained for mechanisms that only involve prismatic
joints (Khatib 1990).
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Figure 8.4: A 3 d.o.f. Manipulator with a 2 d.o.f. Mini-Manipulator
8.3 Dextrous Dynamic Coordination

The dynamic characteristics of a macro-/mini-manipulator system can
be made to be comparable to (and, in some cases, better than) those of
the mini-manipulator. The basic idea in approaching the control prob-
lem associated with coordinating a manipulator and a mini-manipulator
system is to treat the manipulator and mini-manipulator as a single
redundant system. However, this type of control cannot be directly ap-
plied to the macro/mini motion coordination problem. In effect, given
the mechanical limits on joint motions of the mini-manipulator, such a
controller would rapidly lead to joint saturation of the mini-manipulator
degrees of freedom.

The deztrous dynamic coordination we propose is developed within the

anptbyinn,
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framework of redundant manipulator control in operational space. It
is based on the minimization of deviation from the midrange joint po-
sitions of the mini-manipulator. This minimization is achieved using
joint torques selected from the dynamically consistent null space of
equation (6.11). This will eliminate any effect of the additional forces
on the primary task. Let g; and g, be the upper and lower bounds on
the i** joint position g;. We construct the potential function

— 2
- g; + 4,
VDextrous(Q) = ky Z (Qﬁ' - _1) ) (813)

1=nps+1 2
where k4 is a constant coefficient. The gradient of this function
I'bextrous = —V VDextrous; (814)

provides the required attraction (Khatib 1986) to the mid-range joint
positions of the mini-manipulator. The interference of these additional
torques with the end-effector dynamics is avoided by projecting them
into the null space of J7(q). This is

Tue = |1 = J7(@)7" (@)] Tpextrous- (8.15)

In addition, joint limit avoidance can be achieved using an “artificial
potential field” function (Khatib 1986). Several other internal motion
hehaviors have been discussed in the context of controlling free-flying
robotic systems (Russakow and Khatib 1992). It is essential that the
range of motion of the joints associated with the mini-manipulator
accommodate the relatively slower dynamic response of the arm. A
sufficient margin of motion is required to achieve dextrous dynamic
coordination.
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Chapter 9

Multi-Effector /Object
System

M

We now consider the problem of object manipulation in a parallel sys-
tem of N manipulators. The effectors are assumed to be rigidly con-
nected to the manipulated object. The number of degrees of freedom
of the parallel system will be denoted by 7,.

First, we will consider the case of a system of N non-redundant manip-
ulators that have all the same number of degrees of freedom, n. The
end-effectors are also assumed to have the same number of degrees of
freedom, m (m = n}, as illustrated in Figure 9.2. Under these assump-
tions, the number of degrees of freedom of the parallel system in the
planar case {n = m = 3} is n, = 3. In the spatial case (n = m = 6),
this number is n, = 6.

9.1 Augmented Object Model

To analyze the dynamics of this multi-effector system, we start by se-
lecting the operational point as 2 fixed point on the manipulated object.

107
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Because of the rigid grasp assumption, this point is also fixed with re-
spect to the end-effectors. The number of operational coordinates, m, is
equal to the number of degrees of freedom, 7, of the system. Therefore,
these coordinates form a set of generalized coordinates for the system
in any domain of the workspace that excludes kinematic singularities.
Thus the kinetic energy of the system is a quadratic form of the gener-
alized operational velocities, 1/2 xTAg(x)%. The m x m kinetic energy
matrix Ag(x) describes the combined inertial properties of the object
and the N maripulator at the operational point. Ag(x) can be viewed
as the kinetic energy matrix of an augmented object representing the
total mass/inertia at the operational point.

Now, let A-(x) be the kinetic energy matrix associated object itself. We
will analyze the effect of this load on the inertial properties of a single
manipulator, and generalize this result to the N-manipulator system
to find Ag(x).

9.1.1 Effect of a Load

The kinetic energy matrix A(x) associated with the operational coordi-
nates x describes the inertial properties of the manipulator as perceived
at the operational point. When the end-effector carries a load (see Fig-
ure 9.1) the system’s inertial properties are modified. The addition of
a load results in an increase in the total kinetic energy. If we let m,
be the mass of the load and Zricy be the load inertia matrix evaluated
with respect to its center of mass x., the additional kinetic energy due
to the load is ,

1
T = 5 (mgvgvc -+ UJTIE(C)LU) ; (91)

where v and we are the linear and angular velocities measured at the
center of mass with respect to the fixed reference frame. The kinetic
energy matrix associated with these velocities is

_ mﬁf 0
AC(C)—[ 0 -7-]:}

where [ and 0 are the identity and zero matrices of appropriate di-
mensions. To compute the kinetic energy matrix with respect to the

; (9.2)
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e

Figure 9.1: Center-of-Mass/Operational-Point Velocities

operational point, we define r as the vector connecting the operational
point to the object’s center of mass x¢. The linear and angular veloc-
ities, v and w, at the operational point are related to the linear and
angular velocities at the center of mass by '

v I T Ye
= ; 9.
21=1o LD ®3
Where T is the cross product operator associated the vectorr. Using the
inverse of this relationship, the kinetic energy matrix associated with
the load and expressed with respect to the velocities at the operational
point can be written as

[ omed —mgT )
Aoy = s7 I,;+m,;fo}’ (5:4)

The generalized operational velocities X are related to the linear and
angular velocities by a matrix F{x). Expressed in terms of operational
velocities, the kinetic energy due to the load is

T = %}'{T Ac{x)%; (9.5)

A]
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where
Ar(x) = ETT(x)ArEHx); (9.6)

Lemma 3

The operational space kinetic energy matriz of the effector
and load system 1is the matriz

Aeﬁ'ectorHoad (X) = Aeﬁ'ectcu' {X) -+ AE (X) ' a.

This is a straightforward implication of the evaluation, with
respect to the operational coordinates, of the total kinetic
energy of the system.

9.1.2 Multi-Arm System

To extend this result to an N-manipulator system, let A;(x) be the
kinetic energy matrix associated with the ¢ unconnected end-effector .
expressed with respect to the operational point.

Theorem 3: (Augmented Object)

The kinetic energy matriz of the augmented object s

Ae(x) = Ar(x) + D Ailx). (9.7)

o

This results from the evaluation of the total kinetic energy g
of the N effectors and object system expressed with respect L
to the operational velocities,

o

N
T = %)'CTAE(X))'C + Z %}.CTA,(X)J'(
i=1

f— R
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Figure 9.2: A Multi-Arm Robot System

The use of the additive property of the augmented object’s kinetic
energy matrix of Theorem 3, allows to obtain the system equations of
motion from the equations of motion of the individual manipulators.
The augmented object equations of motion are

Ag(X)% + pa (X, X) + Po(x) = Fe. (9.8)
The vector, pg(x,X%), of centrifugal and Coriolis forces also has the
additive property
N
pe(x,%) = pe(x, %) + D mlx, %) (9:9)

=1

where uc(x,%) and p;(x,%) are the vectors of centrifugal and Corio-
lis forces associated with the object and the i*® effector, respectively.
Similarly, the gravity vector is

' N
pe(x) = pc(x) + 21 pi{x), (9.10}

where pz(x) and p;(x) are the gravity vectors associated with the ob-
ject and the i effector. The generalized operational forces Fg are
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the resultants of the forces produced by each of the N effectors at the
operaticnal point.

N
Fe =) F. (9.11)
i=]

The effector’s operational forces F; are generated by the corresponding
manipulator actuators. The generalized joint torque vector I'; corre-
sponding to F; is given by

= J,T(Q;) F;;

where q; is the vector of joint coordinates associated with the i** ma-
nipulator and J7(q;) is the Jacobian matrix of the i manipulator
computed with respect to the operational point. The dynamic decou-
pling and motion control of the augmented object in operational space
is achieved by selecting a control structure similar to that of a single
manipulator (Khatib 1987),

Fo =Ae(x)F" + fig(x, %)+ Po(x);  (9.12)

where, Ag(x), fla{x, %), and Po(x) represent the estimates of Ag(x),
te(x. X}, and pg(x). With a perfect nonlinear dynamic decoupling, the
augmented object (9.8) under the command (9.12) becomes equivalent
to a untt mass, unit inertia object, I,, moving in the m-dimensional
space, _
In% =F~. (9.13)

Here, F* is the input to the decoupled system. The control structure
for constrained motion and active force control operations is snmlar to
that of a single manipulator.

The control structure (9.12) provides the net force Fg to be applied
to the augmented object at the operational point for a given control
input, F*. Due to the actuator redundancy of multi-effector systems,
there is an infinity of joint-torque vectors that correspord to this force.

In tasks involving large and heavy objects, a useful criterion for force
distribution is minimization of total actuator activities (Khatib 1988).
Dextrous manipulation requires accurate control of internal forces. This
problem has received wide attention and algorithms for internal force
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minimization (Nakamura 1988) and grasp stability (Kumar and Wal-
dron 1988) have been developed. Addressing the problem of internal
force characterization, a physical model the wvirtual linkage has been
proposed (Williams and Khatib 1992) for the description and control
of internal forces and moments in multi-grasp tasks.

9.2 Redundancy in Multi-Arm Systems

When redundant structures are involved in multi-arm manipulation,
the number of degrees of freedom of the entire system might increase.
When this happens, the configuration of the whole system cannot be
uniquely described by the set of parameters that specify the only ob-
ject position and orientation. Therefore, the dynamic behavior of the
entire system cannot be described by a dynamic model in operational
coordinates. As in the single redundant manipulator case, however, the
dynamic behavior of the augmented object itself can still be described,
and its equations of motion in operational space can still be established.

The number of degrees of redundancy of the multi-arm system can be
defined by n, — m, where m is the number of degrees of freedom of the
augmented object. Obviously, the freedom of the object is restricted by
the freedom of the effectors. If m; is the number of degrees of freedem
for the it" effector before connection to the object, the number, m, of
degrees of freedom the connected object has will satisfy

m < min{m.}. (9.14)

The inequality in (9.14) reflects the fact that additional constraints
can be introduced by the connection of effectors. When the multi-
manipulator system is redundant, (i.e. ny > m), this implies that one
or more manipulators must be redundant. In this case, the redundancy
of the system can either be localized in one manipulator or distributed
between several manipulators. If n; represents the number of degrees of
freedom for the #® manipulator, the number of degrees of redundancy
of the i*h manipulator is given by n; — m. Only one of the two ma-
nipulators in Figure (9.3-a) is redundant (one-degree-of-redundancy)
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Figure 9.3: Redundancy in Multi-Arm Systems

and both manipulators in Figure (9.3-b) are redundant (one-degree-of-
redundancy each).

9.2.1 Augmented Object in Redundant Systems

To establish the augmented object dynamic model for redundant ma-
nipulators, we first determine the number of degrees of freedom of the
object, m (m < min;{m;}). The dynamic behavior of the augmented
object is then obtained by summing the dynamic properties of the indi-
vidual manipulators in this m-dimensional operational space. The dy-
namics of each manipulator will be “projected” into the m-dimensional
operational space following the same procedure described for a single
redundant manipulator. At this point, the dynamic behavior of each
of the effectors will be described by an equation of the form (5.6). The
dynamic behavior of the augmented object system will be given by an
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equation similar to equation (9.8), which was established for the non-
redundant multi-arm system. In this case however, the inertial proper-
ties of the augmented object are dependent on the full configuration of
the system, which is described by

T
a=(df & ... ak) .

In this equation gq; is the vector of generalized joint coordinates for the
i manipulator. The psendo-kinetic energy matrix of the redundant
multi-arm system is

N
Ag(q) = Ag(x) + 2:1\1'(‘1:')- (9.15)

=1

Dynamic decoupling and control of the multi-effector/object system
can be achieved by selecting the same control structure (9.12) used in
the non-redundant case. However, as in the case of a single redundant
manipulator, dynamics in the null spaces associated with the redundant
manipulators must be calculated and controlled. This requires the iden-
tification of dynamically consistent relationships between joints torque
vectors and end-effector operational forces.

9.2.2 Dynamic Consistency in Multi~Arm Systems

In the case of a single redundant manipulator, we have seen that the

general relationship between joint torques and end-effector forces is

based on the use of a dynamically consistent generalized inverse of the

Jacobian transpose. For a single manipulator, this inverse is given (see

equation 6.6} by ‘
T(q) = A7 (@)JT (q)A(q).

The extension of this relationship to redundant multi-arm systems is
complicated by the fact that the dynamically consistent generalized
inverse is dependent on the joint space kinetic energy matrix A{qg). The
joint space kinetic energy matrix of a redundant manipulator in a multi-
arm system is not simply the matrix associated with the unconnected
manipulator considered alone. Connection of the manipulator to an
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object-results in increased loading on the effector of this manipulator.
This load, which is due to the object and all the other manipulators
connected to it, affects the kinetic energy matrix of this manipulator.

To analyze this, we will first examine how the joint space kinetic energy
matrix in the case of a single manipulator is affected by the addition
of a simple load.

Effect of a Load on a Single Manipulator

The addition of a load to the effector of a single manipulator will result
in an increase in the kinetic energy of system. Let Ajpa4(x) be the kinetic
energy matrix associated with the load and expressed with respect to
the operational point.

Lemma 4:

The joint space kinetic energy matriz of a manipulator with
load is the matriz

Aarm-i—load (Q) = Aa.rm(q) + [JT(Q)AIOM(X)J(Q)] . (916)

This result is derived by expressing the total kinetic energy
of the combined arm/load system in joint space:

T = % [QTA(Q)CI + iTA;oad(x)"‘] = él_qT [A(q) + JIT(q)AZ(xl)‘L(C‘;')] 4

Reflected Load

The pseudo kinetic energy matrix Ag{q) describes the inertial charac-
teristics of the N-effector/object system as reflected at the operational
point. Viewed from a given manipulator, the object and the other ef-
fectors can be seen as a load attached to its effector. The additional
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Figure 9.4: Reflected Load

load perceived by the :** manipulator is Ag(q) — Ai{q;), as illustrated
in Figure {(9.4). Following Lemma 4, the kinetic energy matrix of the
manipulator resulting from this additional load is

Asda) = Adq) + I (@) [Aela) — Ai(as)] Ji(as). (9.17)

Theorem 5: {dynamic consistency in multi-arm sysiem)

The generalized inverse associated with the i** manipula-
tor and consistent with the dynamic behavior of the multi-

effector/object system is

Ji(@) = A7H@ I (@) [Ha) AT @ F(@)] . (9.18)
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Finally, the joint torque end-effector force relationship for the i** ma-
nipulator is

L= J7(@)Fi + [In — I (@) 7T (@) Tas

where I';_ is an arbitrary joint torque vector. Asymptotic stabilization,
dextrous dynamic coordination, link collision avoidance (Khatib, 1986),
and control of manipulator postures can all be integrated in the vector
I';,. which causes no acceleration at the operational point.




