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Abstract

The paper applies a previously presented method
for accurate tracking of paths to force control. This
approach is very simple since it does not require a
joint torque / motor current interface but only a po-
sittonal interface. It can be applied with elastic end-
effectors (sensors) as well as with stiff environments
where most elasticity is in the robot joints. In both
cases deviations from the desired forces are transfered
to positional deviations on joint level. The resulting
path can then be controlled with high accuracy by a
learned feedforward controller including the influence
of the forces. The approach can be applied to the sens-
ing of a contour or to the tracking of a known contour
with high speed.

1 Introduction

In industrial applications force sensor signals may
be used, like signals of other sensors, for the teach-in
of paths in presence of uncertainty. The task is then
the detection of surfaces or edges in operations like
welding or assembly. In these applications either ad-
justment of a position is required or tracking of a path
with predetermined (low) contact force. Another case
where force sensors are needed is e.g. the on-line con-
trol of machining operations as grinding where speed
has to be adapted in relation to the sensed contact
force.

For all such tasks robot controllers have to be pro-
vided with sensory interfaces. Control input are mod-
ifications of the commanded positions either in carte-
sian coordinates or in joint space. Direct access to the
joint torques or motor currents is not provided for in-
dustrial robots. Such path corrections are generated
by a controller with a sampling time of typically 10 ms
and a delay of several sampling intervals. This means
that most proposed schemes for force control (see e.g.

[Sal80], [RC81], [Kha87], [Hog87], [AAHSS], [Mil93],
or [WANO95]) cannot be used without modifications.

A sample task is defined here for experiments on
force control: The robot holds a pin which has to move
along a planar contour maintaining a constant abso-
lute value of the force vector. During this task the

Figure 1: Robot with wrist force-/torque sensor and
contour to be tracked



robot has to feel the shape of the contour (Figure 1).
Force errors are inevitable since changes in curvature
can only be detected by force errors. After sensing,
instantaneous reduction of force errors is limited by
the maximal accelerations the robot can execute.

A second task can be defined: After the robot has
recorded the shape of the contour it is capable to re-
peat the path. In this case both speed and force accu-
racy can be increased. The practical use for this task
are on one hand problems for which CAD-based teach-
in is hardly possible but which are identical for repet-
itive operation. On the other hand all on-line path
planning is identical to this problem if it is performed
for a sufficient number of sampling steps in advance.
So with a second sensor which can predict the force
signal that has to be controlled superior quality can
be reached in force control.

In this paper the problem of force control is re-
lated to the control of positions (Figure 2). This has
two reasons: First, we want to use standard indus-
trial robots with positional interface. Second, not only
force values but also other sensor signals, e.g. from
laser range finders or vision systems, can be trans-
ferred to positional increments which are commanded
to the robot. A general controller can be designed
which is able to track paths which are planned by
multiple sensors. Due to this reason the approach is
called multi-sensory control concept. It is a specific
way of hybrid control because force information and
desired speed have to define the total desired motion
in non overlapping subspaces. For the above defined
contour following tasks the force controlled subspace
is one-dimensional.

For control of forces in stiff systems some authors
recommend impedance control or admittance control
([Hog87], [SC93], [PD94], [CGEY4]). Those ideas are
not applied here since in the force controlled direction
we consider only the force error and not the deviation
from a desired path. On the other side those methods
cannot prevent stability problems due to numerical
reasons.

Direct sensor control as in [HL85], [Kha87], or
[LH92], where the increments of positional commands
are functions of the sensor signals, is not used either,
since then learning of the controllers has to be re-
peated for every new sensor configuration.

Instead, in the multi-sensory control concept all de-
sired movements are expressed by new desired posi-
tions. So learning refers only to the tracking of de-
sired paths. [LH94] presents such a controller which
after minimal learning is able to guarantee high ac-
curacy for arbitrary positionally defined paths. The
disadvantage of this concept is, that all sensors have
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Figure 2: Structure of force control using the multi-
sensory control concept: Sensory signals F yield a de-
sired path qg which is controlled by commands q..
(Thick lines mean data of the current and several sub-
sequent sampling instants)

to be calibrated in positional units, which means the
explicit knowledge of elasticity for force control. This
will be discussed further in Section 2 which deals with
path planning, i.e. the conversion of force signals to a
target position for the tool center point (TCP).

A feedforward controller module is required since
the standard cascaded feedback controller is only suit-
able for reducing statical errors. For compensation
of dynamical influences some additional calculations
are necessary. Section 3 repeats this from [LH94] and
[LH96] describing a learning method for accurate ex-
ecution of positionally defined paths.

The total system will be demonstrated in experi-
ments in Section 4.

2 Transferring sensed forces to desired
joint angles

For the task to be solved path planning consists of
two steps.

In the first step desired vectors of force and position
have to be derived from scalar target values of force
and speed. This is explained in Section 2.1.

In the second step the desired joint angles have
to be computed from the target vectors of force and
position. Roughly spoken, in this step forces are
converted to positional increments according to the
present elasticity. We distinguish between elastic en-
deffectors or environments (Section 2.2) and stiff sys-
tems where elasticity of the robot joints is predomi-
nant (Section 2.3).

2.1 Projection of desired values to the ac-
tual contact frame

The force- / torque vector
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Figure 3: Path planning (without projection of desired values): Left hand side for robots with cartesian elasticity,

right hand side for robots with elastic joints

is defined by measured forces and torques ex-
pressed with respect to the TCP and with compen-
sated weight. For one-point contact in the TCP as in
Figure 1 this means vanishing torques.

In the sample task of Section 1 the desired motion
is then given by targets for the absolute value of the
force vector |f| and for the absolute value of speed
along the contour |v|, and by the plane of the contour
expressed by the normal unit vector e,.

For convenience additional unit vectors of the force
controlled and the velocity controlled directions are
defined. The first one has the direction of the actual
force vector reduced by the component normal to the
plane of the contour since this component can only be
caused by noise or friction.
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This yields the 6 dof desired values and the selection
matrix which are required in the subsequent sections.
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2.2 Evaluation of compliant force sensors

For most tasks in force contact the high stiffness of
industrial robots is unfavourable. To avoid stability
problems artifical compliances are build in between

the last link of the robot and the endeffector ([WNT79],

[Hir93]). In most cases, as in our laboratory setup, this
compliance is part of the force- / torque sensor.

Those compliances can be described by coefficients
of elasticity in cartesian space expressed by the esti-
mated diagonal matrix E,. The robot as well as the
environment are regarded to be stiff.

So without a movement in the velocity controlled
direction (and without noise) the desired value of the
cartesian position is

XdFIX+Ex~(Fd—F) (7)

If the matrix of elasticity is known exactly one mea-
surement (with low noise) is sufficient to determine
the force controlled direction of the desired motion.
Otherwise the error will decrease asymptotically if the
assumed elasticity is lower than the real one. The de-
termination of the desired motion is convergent if

E, <2 E, (8)

is valid element by element. Equation (8) assures
stability of the whole system if the positional control
loop (with the standard cascaded controller) has ape-
riodical characteristics. So, in contrast to direct force
control, neither the elasticity nor the sampling time
affects the stability, as long as the elasticity is roughly
known and the measurements of force and position are
related to exactly the same time instant.

Including the velocity controlled direction yields

Xd(]{?) = S(k’) ~XdF(k’)
+ (I=5(k)) - (xalk = 1)+ Va(k) - To)
(9)
where k is the time step for a sampling time of Tp.
The left hand side of Figure 3 shows the total path
planning module. Transformation of the desired carte-
sian position to the corresponding joint angles is per-

formed by the inverse kinematic transformation in-



stead of the inverse Jacobian since the inverse Jaco-
bian may result in a drift for the directions which be-
long neither to e nor to e, as are translations normal
to the specified plane or rotations.

2.3 Evaluation of stiff force sensors

Without a compliant endeffector or environment,
the elasticity in the joints becomes dominant. This
has to be treated in a different way since elasticity is
not collocated. [Miil93] shows that a joint angle vector

qq = inv(xq) + Eq T Fy (10)
has to be commanded if at the desired position x4 a
contact force Fy is active, if inv(.) denotes the inverse
kinematic transformation, J® is the Jacobian trans-
pose, and Eq is the estimated elasticity matrix on joint
level.
In the same way the actual joint angles have to be
modified before the forward kinematic transformation

x = kin(q— E, - J' - F) (11)

Including the velocity controlled direction yields

xq(k) = S(k)-x
T (L= S(k) - (xalk — 1)+ Va(k) - Ty)
(12)
This is shown in the right hand part of Figure 3.
Joint elasticities for the first three joints of a
Manutec 13 robot are measured in [Tir90]. Consid-
ering the resolution of the joint positions this yields
an accuracy that cannot be exceeded by this robot
when using the positional interface. This accuracy is
reached statically due to an integrative part in the
standard feedback controller.

Ar=E;" - Aq (13)
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So for an effective arm length of less than 1m the
above numbers are an upper bound for the reachable
force accuracy in N. For a more accurate force con-
trol a compliant endeffector has to be used. Joints 4
to 6 are modelled to be stiff in [Ttr90] meaning that
cartesian forces and torques cannot be controlled in-
dependently.
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Figure 4: Structure of the learning system in [LH94]

3 Accurate execution of desired paths

[LH94] and [LH96] show a method for compensa-
tion of dynamical path errors which are caused by the
inability of the robot to follow fast movements accu-
rately and without delay. Such feedforward control
requires the knowledge of the desired path at future
sampling instants. This method will be summarized
in this section.

Dynamical path errors are caused by accelerations
of the desired joint trajectories (Section 3.1) and by
changes of external forces acting on the robot (Sec-
tion 3.2). Compensation of those two kinds of influ-
ences can assure path accuracy if the path is known
in advance (thick lines in Figure 2). This is valid for
the off-line defined paths of [LH94] and for the second
problem defined in the introduction. For on-line path
planning it may occur, however, that the robot looses
the optimal path because this path is determined too
late. For this case it is advantageous to predict the de-
sired path and / or to feedback the actual path. This
is discussed in Section 3.3.

3.1 Learning of optimal feedforward con-
trol

Learning of the compensation of path deviations
is performed hierarchically in three levels (Figure 4).
First, coarse models are built for all joints j, with n,
estimated elements g;; of the impulse response func-
tion each (g; is the measured j-th joint angle, ¢.; is
the commanded one).

05(8) = 0 (8) + 303 (0) + 305 -0k =) — 5 (k)
= (14)



Then these models are used to modify the com-
mands of the training path so that the control errors
are minimized. To do so, for each joint the mod-
ifications Ag.; with respect to the previously com-
manded path ¢.; are estimated from the control errors

€ =44 — 4;-

91 Aq.;(0) ej(1)

Gn,j e
Ingi ~+ 91j €j(N)

(13)

Estimation is preferred to the solution of the sys-

tem of equations since it generates smoother functions

Ag.; if €; is noisy.

ch]'(N — 1)

The resulting modified commands can be learned
in a feedforward controller being able to control even
untrained paths. In [LH96] this parameter adaptive
controller is supported by neural nets to be able to
compensate nonlinear couplings. The resulting con-
troller for joint j is then

0ei () = () + 3 e - aa(k +1) — ag (4)

+n€ti(qd(k)=
qaj(k + 1) — qa5(k), qaj(k + 2) — qq5(k), ..
qaj(k + 1) — qa;(k), qaj(k + 2) — qa;(k), ..)
(16)

where j and j are indices of joints that are seen to
influence joint j for the robot on hand. So n, parame-
ters r4;; and one neural net are learned for each joint.
The solution with linear part and neural net is chosen
because the first line of Equation (16) has to be calcu-
lated with high accuracy which is a problem for most
neural net architectures. On the other side a multi-
layer perceptron is adequate for the representation of
influences which do not fit to the linear approach.

Equation (16) means that a fictive path q. is com-
manded in order to execute the desired path qq4. The
controller parameters r,; can be learned at the in-
stallation of the robot and are valid for the whole
workspace. [LH94] shows that after iterative learn-
ing and control this method yields a reduction of the
path errors from 2mm to 0.1mm for a high speed ex-
periment. The neural nets have to be adapted for each
task but are still valid in case of small deviations due
to sensor signals.

3.2 Consideration of contact forces

In contrast to data from non tactile sensors, signals
of a force-/torque sensor have to be evaluated not only
for path planning but also for control. In [LH94] an
extension to positional feedforward control of Equa-
tion (16) is proposed:

4ei(]) = oo+ S iy - (g 8) — 7 (R) (17)

i=1

Note that 7; = J*-F4is only that part of the desired
joint torque vector that is measurable in the sensor.
The total value is not important since it changes slowly
and statical joint torques are exerted by an integrative
part in the standard feedback controller of the robot
which is included in the rightmost block of Figure 2.

3.3 Extension of the method for on-line
planned paths

If future path information is not available because
it is not yet sensed it can be predicted by

xa(k +1) = xq(k) +i-Va(k) - To.  (18)

In practice it will suffice to transform only x4(k)
and x4(k + ny) and interpolate between the resulting
joint angle vectors to get the inputs of Equation (16).

In addition the future desired path can be estimated
implicitly by

i) = 4 Yo (agk =) —ag (k) (19

which corresponds to a higher order prediction for
constant curvature.
Prediction of the future joint torques is only possi-

ble by

Ta(k + 1) = 74(k). (20)
For high bandwidth feedback in the standard robot

control system no additional feedback is recommended
here except for the path planning loop. Such feed-
back can be advantageous, however, if actual and de-
sired position differ because the desired position has
changed. Then the actual joint angles q(k) have to
be adapted to the modified desired joint angles qq(k)
as fast as possible. This yields a further extension of
Equation (16).
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4 Experiments

The experiments are executed with a Manutec r2
robot. According to the remarks at the end of Sec-
tion 2 a compliant force- / torque sensor (see Fig-
ure 1) is used. The sampling time of the feedfor-
ward controller is chosen to Ty = 16ms. As a result
ng = ng = n,; = 10 is stated. Elasiticity is measured
to be about 0.5mm/N in the plane of the contour.

For the first problem, tracking the front part of the
contour (Figure 1) with a speed of 37.5mm/s, several
approaches are compared. Direct control as in [LH92]
can keep the desired force of 10 N with an RMS error of
0.7N after learning of a force controller for the com-
pliance in use (Before learning sensor values cannot
be kept within the range of 3N..15N.). For another
sensor learning has to be repeated.

The approach of this paper is able to track the con-
tour with a force error of 1.2N working with Equation
(9) but without feedforward control. Including posi-
tional feedforward control of Equations (16), (18), and
(20) reduces the error to 0.9N. Further improvements
can be reached by predicting the shape of the con-
tour by Equation (19), by adding feedback control of
Equation (21), or by both. All the same at that de-
sired speed a minimum of 0.7N cannot be exceeded
since limitations of the robot accelerations prevent all
immediate reduction of force errors in case of unex-
pected curvature.

The second problem is different in the way that the
path planning is finished when the path has to be re-
peated. So the vectors of 75 and qq are available for all
sampling instants of interest. This means that the real
desired values can be used instead of the predictions
according to Equations (18) to (20). In this case path
accuracy is not as much restricted by the robot limits.
So in contrast to direct force control the same path
can be executed again, now with a mean force error of
0.3N instead of 0.9N during sensing (compare Figure
6 and Figure 5).

Alternatively the speed can be increased according
to the limits of the robot. For the whole contour of
Figure 1 this means that the time for 1 round is re-
duced from 26s to 3s resulting in a top speed of more
than 700mm/s (see Figure 7).
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Figure 5: Force history when sensing the contour
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Figure 6: Force history during repetition of the path
with the same speed as during sensing
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Figure 7: Force history during repetition of the path
with a top speed of more than 700mm/s

The resulting force errors are 1.3N when using only
the first line of Equation (16), 1.2N when force feed-
forward according to Equation (17) is added, and 0.6 N
if neural nets are provided for the 3rd, the 4th, and the
5th joint. Neural nets for the other joints are not nec-
essary. It should be noted that without feedforward
control the contour cannot be tracked at this speed.

This superior behaviour during tracking of the off-
line planned paths is valid also for on-line planned
paths if the sensor is able to predict the force signal for
ng sampling steps corresponding to ng-|vq|-To = 6mm
for Figure 6. For the high speed motion of Figure
7 prediction for 1lem is required which at least for
vision based contour sensing means no problem. In
both cases the sensor signal is different from the force
vector to be controlled.



5 Conclusion

The paper demonstrates high accuracy force con-
trol applied to a robot with a positional interface. The
control error can be minimized, even for movements at
maximal speed of the robot, if the path is known in ad-
vance. In contrast, if no predictive sensor is available,
i.e. if measured and controlled variable are identical,
the minimal control error is limited by the maximal
accelerations of the robot.

Such high performance results from single learning
of the robot dynamics which can be executed during
the installation of the robot. No relearning has to
be done for changed sensor configurations or differ-
ent loads since weight and inertia of the load can be
treated in the same way as external forces to the TCP.
Solely the use of neural nets depends on the prob-
lem on hand and training therefore has to be repeated
for a different task. A general neural net which ac-
quires only single learning is currently subject of our
research.
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