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Abstract

The paper presents a dynamical sensor control ar-
chitecture that allows robot arms to perform tasks that
with conventional feedback of sensor data fail because
of delays or deviations due to the robot dynamics. The
architecture distinguishes between robot positional con-
trol and refinement of desired positions using vision
and / or other sensors. Each of these aspects is de-
signed without the knowledge of the other. Communi-
cation between sensors and robot control may be slow
and asynchronuous. Ezxperiments show vision based
control along a seen line at a speed of 0.7 m/s. Path
deviations are about 0.6 mm.

1 Introduction

In most robotic sensing tasks the robot is treated
as an ideal positional device which is able to follow
a target if its trajectory can be sensed correctly. For
relatively slow sensors as vision systems with low com-
putational power or high task complexity this assump-
tion is reasonable. But there are tasks in which the
robot dynamics are important, e.g. in contact situa-
tions which require force control. Unfortunately force
control methods are very specific and cannot be gen-
eralized to other sensors.

This paper presents an architecture for arbitrary
sensors, including vision systems as well as force /
torque sensors. We allow both, complex sensing tasks
and dynamical problems in which communication de-
lays as well as dynamical forces interfere.

A generic architecture including robot dynamics
and arbitrary sensors has not been proposed yet. How-
ever, there is previous work concerning consideration
of dynamics in visual servoing. Corke [5] proposes to
estimate the target speed and to use velocity feedfor-
ward to improve tracking. Conticelli and Allotta [4]
consider the robot dynamics. They investigate decou-

pling and stabilization of the system by an additional
positional feedback loop. Vincze [24] emphasizes the
processing architecture. Given a processing power, a
parallel architecture at the highest possible image ac-
quisition rate is found optimal. For fixed image rate
an on-the-fly configuration is preferred, if possible.

We refer to robots with positional interface because
despite some advantages in force control, torque inter-
faces did not prevail. We assume a robot interface that
accepts absolute (joint or cartesian) positions as com-
mands and that outputs the current position, both at
the sampling rate of the joint positional controller or
slightly slower.

For these type of robots, sensor control usually
feeds back sensor signals directly to the robot input
commands, e.g.

X (k) = xc(k—1)+K,-As(k)+Kq4-(As(k) — As(k — 1))
(1)
where x.(k) and s(k) are the vectors of commanded
cartesian positions and sensor signals at time instant
k, respectively. As means the difference between de-
sired and actual sensor values. In spite of the posi-
tional commands we call this approach direct sensor
feedback. Sensor signals can be forces as well as de-
viations sensed by an (image-based) visual servoing
algorithm or distances measured with a laser range
sensor. The controller gains are represented by ma-
trices K, and K, which are tuned according to the
configuration. This means that whenever the sensor is
modified, the controller has to be designed or adapted
again, taking into account that the whole dynamic
system has changed. The same is true if an additional
sensor is provided. Then the whole system has to be
reconsidered to preserve stability.
Another drawback of direct sensor feedback has
been formulated by Hirzinger [9] as “space time prob-
lem”. Without control error no path correction is in-
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Figure 1: Architecture

duced. And when a path deviation is sensed, some
time is required until counter-measures are effective.
This delay is due to sensor processing and robot dy-
namics. It hardly can be reduced because of hardware
restrictions.

One limiting factor is the interface between sensor
and robot. For usual cascaded control systems the
sensor feedback rate is not exceeding the outer loop
rate. In contrast for positional control the inner loops
are important. They show a much higher rate or even
a continuous implementation. DeSchutter et. al. [6]
stated that in case of low sensor feedback rate, control
with the position as intermediate level is advantageous
to low bandwidth feedback to motor torques. This
confirms the positional approach of this paper.

The paper is organized as follows: In Sect. 2 we
present our dynamical sensor control architecture and
the interface between the modules. In Sect. 3 we
concentrate on the inner loop, positional control. In
Sect. 4 we propose a generic structure for the outer
loop. Then in Sect. 5 we show a sample task in which a
robot is controlled online according to visually sensed
information.

2 Dynamical sensor control architec-
ture
2.1 Overview

The architecture (Fig. 1) distinguishes between
control of robot dynamics and sensory feedback. Key
idea is the definition of an ideal robot. It executes
the desired trajectory exactly and without time-delay.
The ideal robot comprises the real system and addi-
tional blocks. We further provided modules for the
adaptation of the additional blocks, i.e. modules to
make the robot ideal. The ideal robot and its realiza-

tion will be outlined in Sect. 3.

The outer loop interpretes the task description, i.e.
there is a module to process sensor information to ex-
ecute the desired task. This is the topic of Sect. 4.

A special problem is that the actual positions q pro-
vided by the industrial control system do not represent
the arm angles q, but the motor angles scaled by the
gear transmission ratio. Joint angles and scaled motor
positions are different if the gears are elastic. And for
high accelerations almost all gears show some elastic-
ity. Sect. 3 treats this case, too.

Fig. 1 distinguishes between a sensor to detect the
desired path and a sensor to measure the actual robot
motion. The latter is only used in combination with
elasticity and then only for adaptation and not during
task execution. The separation between the two kinds
of sensors is logical. Both systems can be of the same
hardware, a camera e.g. detecting fixed landmarks as
well as features of the desired path. The discrimina-
tion is done since the actual arm position is required
during task independent adaptation of the ideal robot.

Concerning the figure we can state that not only
signals are displayed but also dependencies as e.g. the
influence of the robot position to sensor data.

2.2 Interface of the ideal robot

Input of the ideal robot is, first of all, the desired
path of the tool center point (TCP). This path is
given by the joint positions of the sampling instants.
A cartesian ideal robot can be defined alternatively
(Fig. 2). We discourage from this since inaccuracies
of the kinematic transformations are not relevant with
sensor control. On the other side additional degrees
of freedom (DOF’s) of the inverse kinematic transfor-
mation can be used in the path planning module.
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Figure 2: Alternative architecture with cartesian ideal robot

Output of the ideal robot is the actual position of
the TCP, represented in joint space, too.

At the output only the current position q,(k) at
timestep k is defined. In addition at the input we pro-
vide several desired positions qq(k) - - - qa(k +nqg —1).
Therefore the lines in Figs. 1 and 2 are drawn bold
face. The use of single desired setpoints is not suffi-
cient to achieve the behaviour of an ideal robot, i.e., to
avoid path deviations, velocity errors, or time-delays.
ng is in the order of magnitude of the number of sam-
pling steps corresponding to the main time constant
of the robot.

In case of contact forces acting on the robot, these
forces or their expected (desired) values Fg, or 75 for
the joint values respectively have to be known by the
ideal robot. And this not only for the current time in-
stant but for the same planning horizon of some sam-
pling steps and therefore drawn as bold face line, too.
Only with these torques the information is sufficient
to execute the desired motion correctly i.e. to reach
Qo (k) = qa(k).

2.3 Discussion

It is possible to use the optimized positional con-
troller without sensors. As well sensory feedback may
be applied without the realization of an ideal robot,
i.e. without the use of future desired positions.

The latter may be relevant when sensor data are
used because then future timesteps of the desired path
are not available, depending on the sensor type. Ex-
trapolation of measured sensor signals may be a so-
lution (see Sect. 4.3) or, in case of vision, evaluation
with respect to future TCPs, not only for the current
one.

In our experiments the results were only slightly
inferior without feedforward controller (ng = 1). In
force control this results from the fact that predictions
are not reliable. In contrast in vision prediction is al-
most sufficient if the refinements are computed for the
current desired position (usually at the image border)
and not for the current (delayed) actual position (usu-
ally in the image center). With ng = 1 path accuracy
is dependent on the quality of the industrial control
system.

Instead of the internal structure of the ideal robot
with adaptive elements we could design a model based
implementation of controller and observer without the
use of the industrial robot controller (see Sect. 3.1). In
this case no adaptation modules are required. Then
another interface of the ideal robot is reasonable. It
uses derivatives of the desired path at the current
timestep instead of future positions.

The dynamical sensor control architecture pre-
serves stability as long as the positional robot feed-
back controller is stable. Sensor and position feedback
in Figs. 1 and 2 seem to affect stability, but actually
the signals describe the location of the target, not of
the robot. Stability is touched only when the robot
position itself is fed back. This may be the case if the
transformation from sensor values to desired robot po-
sitions is totally wrong because of an erroneously as-
sumed distance in image processing or an incorrectly
measured compliance in force control (details are in
11)).

Besides, intentionally or unintentionally (due to
noise) high bandwidth desired paths may excite the
elastic modes of the robot. If no sensor for the actual



arm position and no observer is provided, such oscilla-
tions have to be avoided since they may yield incorrect
sensing (for details see Sect. 4).

3 Realization of the ideal robot
3.1 Overview

This section discusses the inner loop if the total ar-
chitecture is regarded as an inner loop / outer loop
implementation of sensor control. So we design a con-
troller which enables the robot to accurately execute
all desired paths nearby the working point in use.

In Fig. 1 the ideal robot itself has three modules.
This results if the architecture shall be easily imple-
mented into usual industrial controllers. The block
in the center represents the mechanical robot and its
standard industrial control system which controls the
actual joint angles q according to joint commands q.
(usually called desired values). The joint commands
and the measured angles q represent the so called sen-
sor interface provided by robot manufacturers.

The industrial control is not able to guarantee ideal
tracking of an arbitrary desired trajectory since the
desired path is present for the controller only in form
of a snapshot. Other time instants of the desired path
are not known.

Therefore we propose to extend the controller with
a module that can process the above defined planning
horizon of ng sampling steps of the desired path. This
will be done in Sect. 3.2. The controller is set adap-
tive to be able to be adapted to the robot dynamics.
In most cases it turns out that it is sufficient to use
feedforward control and no feedback of the actual po-
sitions. Since the ideal robot is independent of the task
to be executed, it is sufficient to perform the adapta-
tion once, at the installation of the robot. Additional
adaptations can compensate for abrasion.

If elasticity has to be considered we have to use
observed values for q, during adaptation of the con-
troller. The observer is set adaptive, too.

For the architecture according to Fig. 2 we also
have to compensate (static) errors of usually unprecise
kinematic transformations by modifying the Denavit-
Hartenberg parameters. In addition, not only dy-
namic motion but also static accuracy is influenced by
elasticity [7]. But static effects are not relevant if path
planning is sensor based since static deviations resem-
ble to differences between nominal and sensed paths.
Nevertheless robots with abolute static accuracy facil-
itate control since the influence of static errors is only
approximately constant because of nonlinear transfor-
mations.

offline: adaptation
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Figure 3: Structure of adaptation (for rigid systems)

3.2 Adaptive feedforward control to im-
prove accuracy

In this article we discuss only dynamical path ac-
curacy. Model based approaches [2] interfere into the
existing control system by directly commanding joint
torques. This implies high sampling rates and precise
model knowledge. Therefore it will not be followed
further. Instead, we implement the modules “posi-
tional controller” and “controller adaptation” from
Figs. 1 or 2. To do so we have different possibilities.
We could simply adapt the parameters of a usual con-
troller or we could use predictive control [8] where the
controller is designed using an identified model. In-
stead, now we will summarize an iterative method [12]
which was previously designed by the authors. This
method allows iterative reduction of remaining control
errors (Fig. 3).

The adaptation is executed in three steps (hatched
blocks) using selected trajectories. After the first run
the robot (including the industrial (feedback) control
system) is identified (1st step). Then the positional
controller is adapted iteratively. This is done by a
posteriori optimization of the sample trajectory (2nd
step), always adapting the controller parameters to
fulfill the optimal trajectory (3rd step). This exceeds
iterative learning control (ILC) [17, 3] since there no
controller is adapted. For the ideal robot we need such
a controller which, at least in the neighbourhood of
the current working point, is able to control arbitrary
paths using the inputs defined in Sect. 2.

The iterative approach tolerates a coarsely iden-
tified model since remaining errors are incrementally
reduced. In contrast we need a controller which can
represent nonlinear mappings with high precision. A
global neural net which directly computes the com-
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Figure 4: Modules of the positional controller for a 2-
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pling steps.)

mands q. ist not realizable with sufficient accuracy.
So we use that the robot is almost linear because the
invariant motor inertia is dominant compared with the
position dependent arm inertia. Therefore nonlinear
parts may be scaled finer. So we propose an extended
setup with linear approach, neural nets to compensate
for couplings and, in case of contact, an additional con-
troller to compensate for external forces (Fig. 4). As
neural nets we use multilayer perceptrons with well
suited training algorithms [21, 10].

Feedback of measured values is not required be-
cause of the good repeatability of modern industrial
robots. So what we need is pure feedforward con-
trol. Compared with model-based methods this corre-
sponds to the computed torque method, since feedback
(in the industrial control system) is independent from
the desired motion.

3.3 Consideration of gear elasticity

In the adaptive architecture of Fig. 1 elasticity has
only to be considered if the position of the TCP is
not directly measurable because the measured motor
angles are not meaningful. Then two cases have to be
distinguished:

In the first case an external measurement device is
available and it is able to measure all DOF’s online.
Then we do not need an observer but we can transform
the sensor signals to joint positions. Then adaptation
and specification of the desired path are possible as
usual.

In the other case the use of the measuring device
is restricted, e.g. to few DOF’s or to offline evalua-
tion. This may be sufficient for adaptation. In [13] a
method is presented in which the positional controller

is adapted using offline available data. The measure-
ments cover only 2 DOF’s that are used to estimate
all 6 joint values. But, at least to specify the desired
path, an observer has to be designed or to be adapted
which provides the required information during task
execution.

Such an observer has to be better than the model
in Fig. 3 since elasticity may excite almost undamped
oscillations. On one hand the planning horizon of the
observer has to cover several seconds if it is limited
to the inputs shown in Fig. 1. On the other hand
high accuracy is required to prevent a phase shift with
respect to the real oscillation. This may demand a
model-based approach or additional sensors (as in [1]).
There are further investigations necessary concerning
this point.

For the present we propose to assume q, ~ qqg
which is valid for a good positional controller which
has been adapted using offline available measure-
ments. Then online path planning as in [14] may be
possible in spite of elasticity.

4 Sensor-based path planning
4.1 Generic structure

The task description is usually given in natural lan-
guage as e.g. “apply glue at 1 cm from the edge”. This
message has to be transferred to a desired path for the
ideal robot. If available, we use a world model that, in
the example, specifies the nominal location and shape
of the edge. In addition, sensor data are evaluated
if this is useful for the completion of the task. With
other words a nominal path is computed and a con-
trol law to modify it in relation to sensor data if there
are uncertainties in the world model, in our example,
if the location or the shape of the edge may vary. So
sensor data specify the actual edge and thus indirectly
the desired path.

Fig. 5 shows a generic structure which is applicable
to force control [11] as well as to control with fixed
or robot mounted cameras [14] or other sensors. In
contrast to direct sensor control as e.g. classical force
control this structure is not limited to single sensors.
Instead, different types of sensors may be fused as long
as each sensor outputs a positional difference.

Fig. 5 begins with a stored path given by points x,,
in cartesian space, e.g. four points for a rectangle, as
it is usual for industrial robots. We added the corre-
sponding desired sensor values s,. Trajectory gener-
ation means that a desired velocity profile is used to
interpolate the points and the corresponding sensor
values for all sampling instants. Usually the overall
time for the trajectory is minimized [22] or a trape-
zoidal velocity profile is prescribed. The result is a
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Figure 5: Generic path planning module

reference path x, with reference sensor values s;..

In the next block sensor data are integrated. The
idea of the dark blocks in Fig. 5 is that in contrast to
usual control we compare reference positions x, and
reference sensor values s, with the actual values. We
then get a sensed desired trajectory.

At least for noisy sensors the sensed desired path
X, has to be smoothed since the ideal robot tries to ex-
ecute even big accelerations without error. Note that
sensor values are not more computed for the sensed
desired trajectory except for the force. This is be-
cause only (external) forces are required by the ideal
robot. Other sensors are not more essential after sen-
sor fusion. So we restrict to the desired path x; and
the desired contact force F.

When using the architecture depicted in Fig. 1
rather than the cartesian approach of Fig. 2, we have
to add the kinematic transformations. We prefer an
absolute inverse kinematic transformation to the ap-
proximation by the inverse Jacobian since the latter
may result in a small drift with respect to uncontrolled
DOF’s.

4.2 Evaluation of sensor data

The dark blocks in Fig. 5 will be further outlined.
We assume that the actual sensor values in combi-
nation with the actual position of the TCP uniquely
define a sensed desired position x4 of the TCP. This is
a generic formulation which also allows the use of vi-
sion data [14], force control [11] or impedance control
[23], and even general sensor based insertion tasks as
in [19].

A simple approach interpretes the difference be-
tween the desired and the actual sensor value to be
a positional error. The sensed desired position is then
the sum of the estimated actual position X, and the

positional error Ax, or, in unsensed DOF’s,; the ref-
erence trajectory x, respectively.

(2)

< — Xq + Ax, in sensed direction
A else

For force control with known elasticity E the dif-
ference between the reference force F,. and the actual
force F in direction of the actual force vector yield the
modification from the actual trajectory to the sensed
desired trajectory.

- 3)

For the task of following a visually sensed edge at
known distance d, an edge point s(x,(k)) in the im-
age plane with a focal length of f is detected which
corresponds to the point x,.(k) of the reference path.
The image point is compared with the image of the
edge point s,(x,(k)) in the reference scenario (nomi-
nal world model).

Axq(k) = (sp(xr(K)) — S(Xr(k)))% (4)

If multiple features can be sensed it is further pos-
sible to extract the distance d or additional DOF’s or
timesteps of the sensed desired path x, from the image
(see Fig. 7).
4.3 Sensor fusion of asynchronuous data

For a more sophisticated approach Eq. (2) is rewrit-
ten as the equation of fusion Eq. (5) and the equation
of prediction Eq. (6).

(5)

Ax. — Ax, — (x, —X,) if sensable
" 0 else



Xy = X, + AX, (6)

The fall differentiation is meant spatial. Computed
values for Ax, remain valid until new sensor values
are received. The equation of fusion can be extended
to different orthogonal sensors each providing a differ-
ence Ax,; from the reference path by measuring the
sensed control difference Ax,; at the estimated actual
position X,;. The sensed desired position x, in Fig. 5
is the sum of reference position and sensable devia-
tions Ax,; of the setup with respect to the reference.

In case of non-orthogonal sensors the equation of
fusion has to be replaced by a filter, e.g. an extended
Kalman Filter (EKF) or an optimization as in [15],
which allows to consider the accuracy of the individual
sensors as well as their contribution to the respective
DOF’s.

In contrast to efficient methods in literature (see
e.g. [18, 16]) our method does not require high sen-
sor bandwidth supposed that the differences between
actual and expected sensor values are time-invariant
or slowly varying. As extreme example single sensing
is sufficient, e.g. a single force vector or a single cam-
era snapshot. This will be used to update the sensed
desired trajectory according to Eq. (6) and then to
control the robot with the inner loop control rate. So
in many cases integration of vision according to Egs.
(4) and (5) is sufficient using the 50 Hz field rate of
off-the-shelf CCD-cameras. Then the ideal robot will
track the desired trajectory x4 with high accuracy,
even at high speed.

Asynchronuous sensing is possible, too. Then in-
stead of projecting the sensed values to the next sam-
pling step as in [20] we compute the position of the
time instant of sensing and then evaluate the mea-
sured sensor data for the latter time instant.

4.4 Discussion

The crucial difference of Eq. (1) with respect to our
approach is that x.(k) — x.(k — 1) is set proportional
to Ax, (k) and not x4(k) in relations to Ax, (k). De-
lays cause multiple corrections x.(k) —x.(k—1) before
the control error Ax, is reduced. Then overshooting
will occur except for very low control gain, which re-
sults from the fact that the actual arm position x, is
not used. In addition extrapolation because of delayed
or asynchronous sensing is not possible since a refer-
ence path x, is not defined. Therefore the approach
of Eq. (1) is sensitive to delays in signal processing.
Summarizing, in contrast to our architecture the usual
method of Eq. (1) requires high sampling rates and
small delays for both, sensors and robot interface.

The existence of a reference trajectory seems to be
a restriction for generic tasks. Reconsidered such a ref-
erence may be degenerated to a single point, a working
point or starting point of motion. E.g. contour follow-
ing in [11] needs no reference trajectory. Instead, the
local desired velocity is computed using only the ac-
tual sensor values.

The demand for all sensors to measure positions
requires calibration of the sensors. So e.g. in case
of a force / torque sensor the natural compliance of
the system has to be known or at least to be measur-
able. This may be a handicap of the proposed archi-
tecture since direct sensor control needs no calibrated
sensors because the transformation from sensor val-
ues to commands is part of the controller. On the
other hand, calibration can simply be reached by mov-
ing the sensor and comparing the sensor values with
the simlutaneously measured actual positions of the
TCP. Positional calibration of force / torque sensors
requires a minimal compliance which fortunately is al-
ways present if the robot can be force controlled by a
positional interface [11].

5 Experiments

As experiment we considered line following [14]
which is similar to industrial applications as laser cut-
ting or applying glue where the target motion is de-
fined relative to one or more edges and the positions
or the shapes of the edges differ from execution to exe-
cution. Such task should be executed with high speed
insuring high accuracy at the same time. In our ex-

Figure 6: Experimental setup with KUKA KR6/1 in-
dustrial robot and endeffector mounted camera,



Figure 7: Displayed camera image with markers rep-
resenting the used window, the image center, and five
detected line points

periment a single line is tracked (see Figs. 6 and 7),
represented by a polynom which is computed from 5
points. Camera fields are grabbed and evaluated ac-
cording to the architecture of Figs. 1 and 5 without
assuming gear elasticity. The computational amount
is so small that the robot controller is able to refine
the desired path every 20 ms without using additional
computing power. The mean control error is about
0.6 mm for a top speed of 0.7 m/s.

Other applications are pick-and-place operations
from coarsely known pickup positions to coarsely po-
sitioned insertion places. In this case the advantage of
the generic structure of the path planning module is
that during approaching no extra stop is required for
image acquisition or for hand over of control to a force
controller. Instead, visually measured target position
and contact forces / moments are fused to reach that
not only jamming is prevented but additional DOF’s
are controlled during insertion.

6 Conclusion

The article presents an architecture which defines
sensor control as the combination of robot positional
control and path planning. Both parts are designed
independently without knowledge of the other. In con-
trast to usual methods we do not require high band-
width signal processing.

The reported experiments and cited papers of the
authors prove that accuracy of an elastic KUKA robot
can be improved substantially for a fixed path, leaving
a reduced path error of 30% with respect to the stan-
dard industrial controller. Tracking deviations with

respect to a seen line are about 0.6 mm at a speed of
0.7 m/s.
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