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Abstract— When industrial robot arms are controlled using
sensor data the performance is dependent on the sensor
sampling rate, on delays in signal processing, and on the robot
dynamics. The paper presents an approach in which control
is inherently stable as long as the time instant of sensing is
known, independently of delays. In addition to sensor data
the method uses the actual robot pose to compute a desired
pose which is then controlled by the existing positional control
loop. Updated sensor data affect the system as a refined target
for positional control. So the positional control and the use of
sensor data are decoupled. This is useful for the integration
of a priori information on the task. The method is applicable
especially for force control tasks as contour following and for
visual servoing.

Index Terms—force control, visual servoing, tracking, sta-
bility, control architecture

I. INTRODUCTION

The paper discusses the problem of controlling an in-
dustrial robot using on-line sensor data originating from a
force/torque sensor, a camera, or another kind of sensor. In
contrast to literature which distinguishes between papers
on force control as [1], [2] and on visual servoing as [3]
the authors emphasize that there are common features for
all kinds of “sensor based control.” Such a global approach
will probably be useful to facilitate sensor fusion.

This paper considers contour following tasks using a
force/torque sensor (Fig. 1) and visual servoing along
curved lines (Fig. 2). A direct feedback of sensor data as
in [1] is not designed in most industrial robot controllers.

Therefore for both kinds of applications usually a PD
control law as

Xc(k) =xc(k—1)+ K, -Ax(k) + K; - (Ax(k) — Ax(k — 1))

9]
is used, where x. is the commanded Cartesian pose of
the robot, and Ax is the control error of the sensor data.
In contrast to our notation x. is commonly referred as
the desired value for the robot feedback controller. It is
accessible in most industrial robot interfaces, as in [4].

The initial value of x. is taken from

x:(0) = x4(0) Q)

which represents the actual pose of the tool center point
(tcp).

In this paper we assume that the sensed control error is
computed from the desired sensor data s; and the actual
sensor data s, by

Ry (s4—Sa)
AX = 0
0

where R, is the rotation matrix which transforms the sensor
data to the robot base system. This notation restricts sensor
data to provide the position. For the sake of clarity, sensors
for the orientation are not discussed here since this would
afford a more complex notation.

In these equations sensor data are understood as Carte-
sian positional values that are measured in a sensor fixed

measured components

3)
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Fig. 1.

Force controlled contour following

Fig. 2. Visual servoing along a cable
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Fig. 3. Control architecture with positional control as inner loop (green) and the determination of the desired path as outer loop

coordinate system. This means that original sensor data as
forces or image data are transformed.

In fact, most force/torque sensors as [5] measure posi-
tional deviations and then compute forces and torques using
the known compliance. Forces can then be transformed
back to positions using the elasticity of the robot, the hand,
or the environment. With a compliant force/torque sensor
at the wrist the Cartesian 6x6 compliance E; ! of the sensor
is dominant, yielding

sa=(1 0)-E £, (4)

where f, is the actual force/torque vector expressed in
the sensor system. For stiff sensors refer to [6] for a more
detailed discussion.

In the same way visual servoing algorithms - position-
based as well as image-based - yield positional differences
Ax. For the scope of this paper we consider only small
differences so that the components are independent from
each other.

The drawback of the approach (1) is that delays in signal
processing or dynamical delays of the robot worsen the
performance. With a time-delay of several sampling steps
a sensed static control error will increase the value of x. (k)
many times before the sensor signal changes. Then the
robot will move and - in relation to the gains - either
overshoot or creep to the desired position rather slowly.
So big time delays or low sensor sampling rates cause a
rather unsatisfactory step response. Unmodeled dynamical
delays can affect stability.

Another drawback is that the computation of the gain
matrices K, and K; depends on the characteristics of the
sensor interface as well as on the robot dynamics since
both contribute to the total delay. So the total system is
not modular.

In this paper we present a different approach in which
the robot dynamics and the sensor characteristics are de-
coupled. As usual, with this approach the performance will
decrease inevitably with big time delays. But in contrast to
the PD control method of (1) our approach is inherently
stable as long as the time delays are known, irrespective
of their amount. The approach distinguishes between the
computation of the desired pose using sensor data, and
the positional control using the internally measured joint
positions.

Previous work exists by Zhang et al. [7] who as well
compensate delays due to image processing and data trans-

fer. In contrast to the approach presented here they do not
include delays caused by the robot dynamics.

On the other side Conticelli and Allotta [8] present a two
level architecture which separates visual feedback from the
robot’s dynamics. The robot is controlled in the lower level
which thus represents a linear process for the outer loop
controller.

In all these approaches the inner loop does not totally
compensate the unwanted robot characteristics. So a de-
coupling between control of the robot and task specific
execution of the sensor task is not reached.

In Sect. II our basic method is presented. Sect. III then
deals with the positional control. The integration of a priori
information and special applications are discussed in Sects.
IV and V. The method is finally demonstrated in Sect. VI
using an example of visual servoing.

II. FUNDAMENTAL APPROACH FOR SENSOR-BASED
CONTROL

The method is based on the separation between the
existing positional control loop and the integration of
sensor data, as shown in Fig. 3. Sensor data are used to
compute a desired pose of the robot.

In Fig. 3 positional control is executed by joint con-
trollers since on joint level there are less couplings than in
Cartesian space. The kinematical transformations between
the Cartesian pose vectors x and the vectors of joint
positions q are known since we do not consider redundant
robots or singular configurations. q; and q, are the desired
and the actual joint values respectively. q. is the vector of
commanded positions which is the usual input to industrial
control systems. It is computed using an adaptive feedfor-
ward controller [9], [10] which processes in each sampling
step the desired values of the current and of some future
sampling steps (bold face lines in Fig. 3 denote values
of several sampling steps). A sufficient number of future
values theoretically allows the realization of an ideal robot,
i.e. a robot which precisely executes the desired trajectory
without time delays. For fixed programmed paths without
using sensor data this is valid as has been demonstrated in
[9].

If sensor data are used, however, future desired values
are not known and coarse predictions will cause control
errors. Accurate predictions and therefore precise tracking
has been shown for a kind of visual servoing tasks [11] but
in this paper we treat the general case. Special cases will



be discussed in Sect. IV. So far, as prediction we use an
extrapolation of order zero, i.e. the currently sensed desired
pose is taken for future values as well. This yields

X, (k) = xq(k) (5)

when using the basic configuration of the feedforward
controller [9]. Fig. 3 shows an additional branch with
vectors T; as input to the feedforward controllers. This is
an extension to the feedforward controllers that will be
explained in Sect. III-A.

Similar to [7] we compute the desired pose by

x4(k) = X, (k) + Ax(k). (6)

The difference with respect to (1) is on the one hand
that x, (k) is used instead of x.(k—1). In fact, (6) does not
accumulate sensor data to a commanded pose but computes
a desired pose which will be constant if there are no
disturbances. Former robot interfaces did not provide the
current values of x,(k) in each sampling step. This may be
a reason why the approach of (1) is common. See Sect. III-
B for this case.

On the other hand a gain matrix K which usually
accounts for the closed loop characteristics is not required
since (6) represents a geometrical relation which is inde-
pendent of dynamical or temporal parameters.

Strictly speaking, (6) does not close a loop but simply
computes a pose namely the pose x,. If this pose is reached,
i.e. x4(k) = x4(k) then s,(k) = sy(k). See Fig. 4 for an
example.

To avoid a drift in not measured components a reference
trajectory x,(k) is introduced that has to be followed. A
typical example is

x, (k) = x,(0)Vk @)

for all components but the feed which is a function of time.
Then, in contrast to (3)

R;-(s4—5a)
Ax = 0

X, — X,

measured components

®)

other components

is defined which represents all components. Ry can be
extracted from x,(k) since it represents the orientation of
the sensor with respect to the base system.

This corresponds to a hybrid position and sensor based
control
X7 (k
@ =s( N Y eaesmm o
with S as selection matrix and x} and x{ as the position
vector of the measured components and the pose vector of
the other components respectively. This yields

X (k) = X[ (k) + R (k) - (54 (k) —sq(k)). (10)

The actual sensor vector s,(k) represents the actual
sensor pose X, (k) with respect to the pose X, (k) of a sensed
object (represented by sensible contour points or visible
features), as far as the components are sensed.

Ry(K) -su(k) = (x]/(k) = X2 (k) an
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Fig. 4. Computation of the desired tcp position x; for a pin (yellow)
pressing against a fixed block (blue). The desired force f; will be reached
for the green tcp position. The real (dashed) pin position differs by the
sensor deflection and remains unchanged.

When inserting (11) in (10), the latter becomes
xq (k) = Ry (k) - sq(k) +x5' (k). (12)

This means that (10) does not feed back the actual robot
pose. The same is true for the not measured components.
Consequently the total system is asymptotically stable as
long as the positional controller is stabilizing the system.

Nevertheless the actual robot pose is fed back
if the sensor is miscalibrated. If the scale factor
is k instead of 1 and if there is an unknown

time difference Ak between measuring of the sen-
sor data and of the robot pose, (12) will become

X (k) = xg (k) + K- [Ry (k) - 54 (k)
—X(k — Ak) + X (k — AK)]

Therefore [12] presents a method to adapt the parameters
k and Ak of the sensor data processing. A known time shift
between sensor data and the measurements of the robot
pose is no problem since we can interpolate between the
robot poses of two consecutive time-steps.

A formal stability criterion would be

(13)

1-6() " G) <1 (14)

with G(s) being the transfer function resulting from (13)
and the robot dynamics. This means that stability is touched
if k¥ > 2 or the phase shift caused by Ak is greater than
180°. The latter means that the temporal uncertainty is in
the order of magnitude of the robot time constant. Either
condition is only fulfilled with a very poor knowledge of
the system.

III. FEATURES OF THE POSITION CONTROLLED ROBOT

Actually, the method of Sect. IT works with almost any
kind of positional loop of the robot. There are however
some features which affect the performance and should
therefore be considered.



A. Positional control including disturbance compensation

As controller setup we selected the standard feedback
controller of the robot manufacturer and an additional
feedforward controller (see Fig. 3) since then - provided
that the predictions of the desired pose are available (see
Sect. IV) - the control error can be reduced to zero. This is
true if there are no external forces acting on the robot. So
in the strict sense, for force control tasks the positional
controller is not optimal. Ref. [13] shows experimental
results on the effect of external forces on the positional
control accuracy.

To prevent such degradation we extend the feedfor-
ward controller. In addition to the current and future
desired positional values we process the current and future
forces in the feedforward controller. The resulting setup is

@) =a® + YKy (@) —quk)
i=0

n iZdOKﬁ-u;(kw)r;(k))

as)

where 75 is the part of the desired joint torque that
is required to exert the external contact force f; at the
tcp. The feedforward controller parameters are adapted and
represented by the matrices K, and K; which usually are
diagonal.

To clarify, the use of force data in the positional control
loop is no force control but a compensation of the effect
of forces on the positional control.

B. Acquisition of the actual pose

Equation (6) assumes that the actual pose x,(k) is known
in each sampling step k. There are two possibilities to
approximate x,(k) if it is not provided by the industrial
robot interface:

The more advanced approach is to use an observer for
X4 (k). This observer has to model the robot dynamics.

The simpler method is just to use x.(k—ka) instead of
x4 (k). In this case k, is the number of sampling steps which
corresponds to the robot time constant.

xa (k) = xc(k — ka) + Ax (k) (16)

With a well tuned robot feedback controller this ap-
proach works quite well. Compared with the approach of
(1) the use of kp > 1 allows to increase the performance.
Nevertheless, if the robot time constant is widely unknown
there may be a gain matrix K < I advantageous as in (1).

IV. PREDICTION OF FUTURE VALUES OF THE DESIRED
POSE

Equation (6) recommends to compute the desired pose as
the sum of the actual pose and the sensed deviation. Future
values of the latter have been computed by extrapolation
of order zero. Instead, similar to (12),

xg (k+1i) = Ry(k+1) sy (k+i) + %7/ (k+1i)  (17)

could be used to compute x;(k+ i) when the sensor data
of time-step k are received.

Fori=0
(k) =x0' (k) = x' (k) — Ry (k) - s4(k). (18)
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In contrast, for i > 0O there are several possibilities to
predict &7'(k+ i), depending on the knowledge about the
process.

A. Implicit prediction

If no a priori knowledge is available a general extrapo-
lation is defined by
p
%5 (k1) = x5 (k) + ) Keij- (x5 (k) = x5/ (k= j)) - (19)
Jj=1
with usually diagonal matrices K,;; as parameters that can
be adapted. This corresponds to a smooth contour that has
to be followed, where the extrapolation from previously
sensed values predicts the future ones. For unpredictable
contours the parameters K,;; will be small. In contrast for
linear contours n, =1 will be sufficient with K,;; =i-L
In the general case the parameters K.;; will be adapted
either before the experiment at a test path or on-line
during the experiment. They are computed to fit (18) with
&7 (k+1i) = x"(k+ i) which is available shortly after time-
step (k+1).
Equations (17), (18), and (19) correspond to (1) for a
contour following task using a force sensor.

B. Use of a priori knowledge for explicit prediction

There are tasks however, which allow a more advanced
control since the nature of the disturbances is known. This
may be a known equation of motion as a parabola for free
flying objects under gravity (see e.g. [14] for such a task),
a conveyor belt with known speed and rotation as in [15]
or oscillations with measurable cycle time as in surgical
applications as in [16]. For all such tasks our method is
applicable with (19) replaced by the a priori known setup.
The unknown parameters as offset or phase will be adapted
on-line.

In the simpler case of tracking a known contour with
uncertainty in the measured positional components, the
reference path will contain the required data.

R (k+7) = X" (k+1) — X" (k) + X" (k) — Ry -sq(k)  (20)

C. Direct measurements of future values

Depending on the sensor it might be possible to measure
the “future” sensor values. This is true for vision systems
which are used to track unmoved objects. Each image will
allow to measure X not only at the current tcp but in a
region which corresponds to several sampling steps [11].

If no cameras are available, additional copies of the
sensor will be required. These copies are not mounted at
the tcp but in front of it, i.e. in the direction of motion.
They are then called leading or predictive sensors [17],
[18]. This allows to measure at different positions. With
a known speed this corresponds to different time steps.
The required values of the time-steps (k + i) can then



be computed more precisely since interpolation instead of
extrapolation is used.

Unfortunately such predictions are sensitive with respect
to parameters as the pose of the sensor. Ref. [12] gives an
example of the adaptation of these parameters.

D. Smoothing of the desired trajectory

So far there is no filtering of sensor data designed. It
is fundamental, however, if there is significant noise on
the data. This is assumed here to be suppressed within the
Sensor.

Filtering is further required if the difference between
actual and desired poses is so big that without smoothing,
saturation effects of the actuators are interfering. This
means that the approach is not suited to record a step
response. Instead, at the beginning of a trajectory or after
a step of the desired value a smooth reference s, (k) has to
be defined to avoid saturation of the actuators. In contrast,
a general reduction of Ax would limit the performance of
trajectory following tasks.

V. POSSIBLE APPLICATIONS

So far force control or visual servoing tasks have been
discussed. Now we want to emphasize that other tasks are
possible as well as regards

1) hybrid position and force control (or hybrid position
and sensor based control)

2) impedance control

3) combination of force and vision-based control (or, in
general, control with different types of sensors)

4) asynchronous control and sensing (or sensors with
large computation time)

5) switching between sensors

6) tracking of a time variant desired sensor vector sy (k)

Such tasks are possible because of the modularity of our
approach. So e.g. for a control task using a force sensor an
equation of the desired impedance as

Es-(x7—x")+ (R, 0)-(f,—f)=0 (1)

can be integrated to the computation of the desired pose.
E; is the desired 3x3 elasticity matrix. Then it is not the
positional reference x, which is sent to the robot controller
but the desired pose x;. E; # 0 means that instead of the
reference force f, a desired force f; wil be reached. This
will be outlined in a further paper.

Accordingly, with multiple sensors of different accuracy
a weighted desired pose can be computed and tracked by
the robot. The weighting may consider different scales and
accuracies but has not to take the robot dynamics into
account. This is a fundamental difference with respect to a
fusion of sensor-based control laws like (1).

It is evident that control is continued without new sensor
data using the current robot state and an extrapolation
of the previously measured state of the environment. The
latter will be updated when new sensor data arrive. So
continuously at robot control rate measuring sensors are
not required.

Switching between sensors means asynchronous mea-
surements of different sensors. As well in this case the
robot dynamics are continuously processed. There is no
need to stop before switching, but smoothing may be
advantageous, particularly if the sensors record different
degrees of freedom (dof).

VI. EXPERIMENTS

Currently the setup of [6] (Fig. 1) is not more available.
Since there the basic setup of our approach has already
been demonstrated using a force sensor, we are now
free to take another sensor to present the more advanced
features. Actually we take image data to control the robot
along a cable (Fig. 2). Ref. [11] has documented the
high performance when measuring future sensor values
according to Sect. IV-C. In contrast, here we restrict to
the measurements of the cable position in the center row
of the image. So our experiment corresponds to the more
difficult case of contour following using a force sensor,
thus allowing only implicit prediction of the contour.

The use of vision instead of tactile sensor data allows to
restrict to the first line of the positional control law (15).
The parameters K,; have been estimated according to [9].

We use a KUKA KR6 robot with the industrial con-
troller KRC1. So we have a sampling time of 12 ms
and a time constant of about 80 ms of the robot and
the controller, including a built-in filter. The camera is a
standard monochrome device which provides image fields
every 20 ms. The mean delay between the image capture
and the control sampling step in which it is used is 30 ms.

Sensor data are only used to control the radial component
of our planar path. The remaining 5 dof are given by a
reference path which turns the tcp back and forth at 0.2 m/s
around the robot base. This corresponds to a hybrid position
and force control problem with a tool oriented task frame.

The right hand side of Fig. 5 compares our approach
with a manually tuned PD controller according to (1) with
K, =0.3 and K; =0.2. This controller is slightly superior
to our basic approach. The reason might be that the tuning
implicitly considers the steep but smooth layout of the
cable (see left hand side of Fig. 5). But our approach is by
far superior when using an extrapolation according to (19)
with off-line estimated parameters for n, = 10.

This performance is only slightly affected if the actual
tcp position is not provided by the robot manufacturer.
Fig. 6 shows the performance with (16) (with kx = 7)
instead of (6).

Fig. 6 further shows the result when the estimated sensor
gain is totally wrong. This gain is represented by the
distance from the camera to the cable in our case, or by
the elasticity in case of a force control scenario. Both
parameters can be tuned easily. In contrast, for the last
experiment we used twice the real value, which corresponds
to the stability limit. Therefore the red curve in Fig. 6
displays a small-scale oscillation but, after all, an accept-
able result which by chance is slightly superior to the PD
controller, because the higher gain improves tracking of
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line), our approach with extrapolation but with (16) instead of using
the positional measurements (dash-dotted green line), and our approach
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the non modeled cable layout. Of course, the performance
with modeled cable layout is not reached.

Since a better performance generally requires bigger
actuator values, the presented method may show more
saturation effects than simpler methods, at least when big
delays are present. This can be avoided by a scaling, either
in the extrapolation (19) or in the feedforward equation
(15), to reduce the accelerations of the robot commands
(.. Unfortunately this limits the performance and therefore
it has not been used in the experiments.

VII. CONCLUSION

We demonstrated that the presented approach in its basic
form and without tuning is equivalent to the well known
control setup of (1) with appropriate parameters. When our
method is extended using an assumption on the type of
disturbance, the reached accuracy outperforms the usual
method by far, even in the general case without a priori
information on the disturbance.

The improvements are not restricted by stability limits
but only by saturation effects of the actuators. Besides, the
system is very robust with respect to miscalibrated sensors.

In contrast to other inner loop / outer loop approaches we
separately design the positional controller and the modeling
of sensor data. So besides the strong performance our
approach is well suited for a modular system, which has
been required with the asynchronously measuring sensor.
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