
1

Calibration and Registration for Precise
Surface Reconstruction with TOF Cameras

Stefan Fuchs and Stefan May

DLR, Institute of Robotics and Mechatronics,
E-mail: stefan.fuchs@dlr.de

Fraunhofer Institut, Intelligente Analyse- und Informationssysteme,
E-mail: stefan.may@iais.fraunhofer.de

Abstract: This paper presents a method for precise surface recon-
struction with time-of-flight (TOF) cameras. A novel calibration ap-
proach which simplifies the calibration task and doubles the camera’s
precision is developed and compared to current calibration methods.
Remaining errors are tackled by applying filter and error distributing
methods. Thus, a reference object is circumferentially reconstructed
with an overall mean precision of approximately 3mm in translation and
3◦ in rotation. The resulting model serves as quantification of achievable
reconstruction precision with TOF cameras. This is a major criteria for
the potential analysis of this sensor technology, that is firstly demon-
strated within this work.
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1 Introduction

Figure 1 Experimental
setup of DLR 3D-Modeller
with TOF cameras

Since their invention nearly a decade ago, TOF-
cameras have attracted attention in many fields,
e.g. automotive engineering, industrial engineering,
mobile robotics and surveillance. So far, 3D laser scan-
ners and stereo camera systems are mostly used for
these tasks due to their high measurement range and
precision. In contrast, TOF cameras allow for higher
frame rates and thus enable the consideration of mo-
tion. However, the high frame rate has to be balanced
with large fluctuations in precision depending on exter-
nal interfering factors (e.g. sunlight) and scene config-
urations, i.e. distances, orientations and reflectivities.
These influences cause systematic errors besides noise
and have to be handled by the application. Without controversy, TOF cameras
enable the handling of environment dynamics. Accurate measurements and ro-
bustness to these influences ease the research of related more sophisticated tasks,
such as tracking and object recognition. This paper presents a method for surface
reconstruction using TOF cameras. Surface reconstruction is a basic task for appli-
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cations, i.e. object detection, manipulation, environment modelling or bin picking.
The presented method includes a calibration approach, which addresses the error
model, as well as necessary post processing methods tackling remaining inaccura-
cies. As a result, this work enhances the measurements by accurate pre-processing,
showing the precision of an arbitrary object reconstruction. The outline of this pa-
per is as follows: Section 2 presents related work with TOF cameras, i.e. calibration
methods as well as implemented applications for these devices. Section 3 develops
the error model, which is used in section 4 to derive an optimal calibration method.
Section 5 and 6 comprise the reconstruction task while handling remaining impre-
cision. Experiments and results of the entire approach are presented in section 7
and finally concluded in section 8.

2 Related Work

This section presents related work on TOF cameras in the context of surface
reconstruction. First an overview of calibration approaches will be given. The
second part discusses applications of TOF cameras.

2.1 Camera Calibration

In relation to grey-scaled cameras that are defined by a pinhole camera model,
calibration circumscribes the estimation of intrinsic parameters, i.e. distortion co-
efficients, focal length and shifting of the optical centre. Zhang presented a flexible
technique to easily compute these projection parameters of a camera [14]. Fur-
thermore, calibration also includes the pose estimation of the camera frame with
respect to (w.r.t) the robot end-effector frame (also known as Tool Center Point
(TCP) frame). This pose is important for dynamic applications, i.e. if several mea-
surements have to be related to each other. Strobl et al. depicted a calibration
method for eye-in-hand systems in order to estimate the hand-eye and the robot-
world transformation [11].

Since TOF cameras provide grey-scaled images and are described by a pinhole
camera model, these named methods in estimating the intrinsic and extrinsic pa-
rameters are feasible. In parallel to intensity images TOF cameras provide depth
information, that is erroneous and has to be corrected. Currently, only few au-
thors considered these both sides of the calibration task. Lindner et al. as well as
Kahlmann et al. both estimated the intrinsic parameters of a TOF camera using
grey-scaled shots of a chequerboard [7] and a planar testfield with Near-Infra-Red
(NIR) LEDs respectively [5]. Both authors also investigated the faulty depth mea-
surements by mounting the camera on a precise measurement rack and directed
it towards a white smooth wall. With the known wall distance a systematic cir-
cular distance error was detected for the whole measurement range of 7500 mm.
Lindner et al. approximated this error with cubic B-splines, whereas Kahlmann et
al. compensated the error by a look-up-table. A per-pixel precision of at least 10
millimeters is achieved.

These investigations are very valuable for describing the error model of TOF
cameras, but are laborious and not required for most applications which have a
delimitable working range, e.g. grasping or bin packing. Furthermore, the TOF
camera is calibrated to a known distance that is assumed to be the ground truth
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but may be erroneous, because the camera is manually attached to the high pre-
cision rack. Since calibration is related to camera adjustments, especially to the
adjustment of exposure time, this paper proposes a novel calibration method for a
small working range (e.g. 500mm to 1500mm), while keeping these parameters con-
stant. The calibration method concurrently estimates the transformation between
camera and the TCP as well as the depth correction parameters. In contrast to the
cited approaches no special pattern or ground truth is needed. The calibration is
only based on depth images. Thus, manual errors are eliminated and the effort of
a practical calibration is minimised.

2.2 Surface Reconstruction

Surface reconstruction is a basic task for object detection, manipulation and
environment modelling. Generally, the object’s surface is reconstructed by merg-
ing measurements from different views. For this approach the depth data and the
pose of the sensor is needed. When both, the pose and the depth, are unknown,
structure from motion is a solution. Corresponding features in consecutive images
are used to estimate the ego-motion of the sensor. Based on this ego-motion infor-
mation the depth is estimated. If only the depth information but no pose is given,
i.e. by using a stereo camera or a laser scanner system without inertial sensors, an
Iterative Closest Point (ICP) algorithm can be used to register the point clouds
from different views [1]. Finally, if pose and depth are known, the registration pro-
cedure is dispensable and the data can simply be merged. In any case: The quality
of surface reconstruction depends on the precision of sensor pose estimation and
depth measurement.

There are already precise surface reconstruction applications available using
laser scanners, e.g. Bodenmueller et al. presented an online surface reconstruction
approach with a hand-guided scanner system [2]. The precision of registering one
scan in the global coordinate system is in the order of some millimeters in translation
and below 1◦ in rotation. A 3D mapping approach tackling large environments was
presented by Nuechter et al. [8] using a 3D laser scanner mounted on a mobile robot.
Imprecision of inertial sensors is handled with an ICP approach, both for registering
consecutive scans and for closing the loop. The pose displacement between the first
and the last scan of a loop quantifies the error summed up scan by scan and can be
used to be distributed among all scans. The performance is one of the main issues,
since millions of points are measured for a map with a trajectory length of 250 m.

In 2006 Ohno et al. used a TOF camera for estimating a robot’s trajectory and
reconstructing the surface of the environment [9]. An ICP algorithm registered the
distance measurements to each other and provided the robot’s trajectory. The cal-
culated trajectory was compared to precise reference data in order to demonstrate
the algorithm’s precision. The estimation error for the robot pose was up to 15
percent in translation and up to 17 percent in rotation respectively. These results
are far beyond the precision achieved with the scanner system referenced in [2],
but sufficient for building maps of large environments, which is quite different from
object reconstruction especially for small objects. In this paper range data regis-
tration is used to give a quantity of achievable precision for surface reconstruction
tasks with TOF cameras, especially of small objects (100mm to 500mm).
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3 Description of TOF Camera Errors

Lange detailed the different error sources, that falsify the TOF camera depth
measurements [6]. In this context only those errors are mentioned which are consid-
ered by the presented surface reconstruction technique. First of all, there is an error
in distance measurement depending on the NIR illumination of the scene. Low illu-
mination results in a bad signal-to-noise ratio and distorts the measurement. This
problem can be actively solved by carefully increasing the exposure time or the
illumination power. A passive solution is filtering out the measurands with low
amplitudes, which indicate a faulty depth. Furthermore, imprecision arises also for
data acquired on jump edges. The measured distance is determined by a mixture of
reflected light from fore- and background objects. It is aimed to discard this type of
data by applying special edge filters. Finally, the electronic layout of the sensor and
the special measurement principle of time-of-flight cameras create several system-
atic errors. Because the modulation of the transmitted NIR light is not perfectly
sinusoidal, a Circular Error arises in the distance measurement with an amplitude
between 60mm and 120mm and a wave length of 2000mm (see [7] [5]). Within the
CMOS-gates of the sensor signal propagation delays are generated, which cause
an offset or pixel dependent distance error. While the first mentioned errors are
handled by filters, that are presented in section 5, the latter systematic errors are
considered by a calibration step, which is explained in the following section.

4 Calibration Step

The intrinsic and extrinsic parameters as well as the systematic errors of the
camera have to be precisely estimated for achieving a high level of precision. Ini-
tially, the intrinsic parameters of the camera are computed via a chequerboard
pattern [3]. The extrinsic parameters could also be calculated via this pattern.
However, the limited precision of corner localisation due to the low resolution of
TOF cameras only allows for inaccurate pose estimation. Therefore, a new proce-
dure for computing the extrinsic parameters is proposed, that simply needs depth
images of a planar surface and supplementary parametrises the two discussed ad-
ditional systematic errors: The circular error and the signal propagation delays.
Let P = {vj} represent the depth image coordinates where v = (row, col) and j
denotes the pixel index. The camera measurements of distorted distances are given
by (Di(v)|i = 1, ..., n) where i denotes the image number. The circular error is
modelled by a polynomial term Ec(Di(v)) =

∑m
k=0 pk[Di(v)]k. The error caused

by signal propagation delays is linear dependent on the pixel location in the CMOS-
array on the chip and geometrically described by Ed(v) = b0 + b1r + b2c. Summed
up, the depth error is C(Di(v),v) = Ec(.) + Ed(.). Based on this assumptions, the
desired sensor-to-tcp transformation, tTs, is estimated. Thereto, the camera, which
is mounted on a robot, is moved to different poses wTi

t. These poses are given by
the robot control. The calibration plane is defined by its normal nc and its dis-
tance dc to the origin of world coordinate system. Now, the unknown error-function
parameters (p0, ..., pm, b0, b1, b2), the calibration plane pose (nc, dc) and the sensor-
to-tcp transformation (tTs) are estimated through a nonlinear least-squares fitting.
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Thereto, an error function

F (p0, ..., pm, b0, b1, b2,nc, dc,
t Ts) =

1
2

n∑
i=1

∑
v∈P

f i
v(.)2 (1)

is minimised. A(Di(v),v) ∈ IR3 forms the projection of a given distance and its
image coordinates into the three-dimensional coordinate system.

f i
v(.) = nT

c [ wTi
t

tTs A(Di(v) − C(Di(v),v),v)] − dc (2)

denotes the individual error per measurement. The error function F (.) is minimised
by trust-region methods for nonlinear minimisation in order to estimate the desired
parameters.

5 Filtering the Depth Images

Calibrating the TOF camera increases the measurement precision for defined
range intervals and camera configurations by adjusting systematic errors. The
remaining errors caused by low illumination or jump edges, are treated by filtering.
A high confidence is related to a high amplitude (to be precise: this statement is
only a compromise to what the camera provides; see [6] for a description of error
influences). Thresholding the amplitude discards primarily data resulting from
objects with lower infrared reflectivity, higher distance or from objects which are
located at the border area of the measurement volume. Edge detection in range
images can be done by a variety of methods (see [4] for an overview). It is important
to use an approach that can distinguish between different types of edges, i.e. jump
and crease edges. Crease edges can be further classified into concave or convex roof
and concave or convex nonroof edges. Measurement errors resulting from crease
edges are difficult to handle in a post processing stage and should have been tackled
sufficiently with a proper calibration. Therefore, it is sufficient to detect jump edges
for filtering. The scan line approximation technique referenced in [4] represents a
good approach in detecting distinguishable edges. From a range image z(x, y), scan
lines of different orientations are taken and split into quadratic curve segments. The
computational effort depends on how many edges are being found. Especially noisy
areas will be decomposed into many segments, e.g. background areas while focusing
near bright objects. Confining on jump edges, a similar result is achieved with a
more lightweighted approach. Data points are tagged as jump edges, if one of the
opposing angles of the triangle spanned by the focal point and two neighboring
data points exceeds a threshold, see figure 5.

6 Range Data Registration

In the context of range images, registration means to merge different point sets
into a common coordinate system. With n datasets (Di|i = 1, ..., n), it is aimed to
find the transformation matrices of those datasets Ti = [Ri|ti], which are composed
of a rotation matrix Ri ∈ IR3 and a translation vector ti = (x, y, z). With the
start transformation wTi

t
tTi

s, given by the calibration (sensor to TCP) and the
robot encoders, it is aimed to find the remaining displacement θTi

w completing
in Ti = θTi

w
wTi

t
tTi

s. A common solution to the registration problem is the
use/application of the ICP algorithm or one of its variants [1]. Since the pose of
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Figure 2 Left: Simplified filter for jump edge removement. pn and pm are neighboring
data points and ϕ the angle between them and the focal point. A triangle is spanned
between these points. The angle ξ is used for thresholding jump edges. Mid: Unfiltered
image. Right: Appliance of gaussian blurring and jump edge filtering.

all datasets is determined with the same precision it is aimed to distribute the
displacement of all surfaces with an approach called simultaneous matching [13].
The scene S is sequentially assigned to one of the datasets Di. Therefore, the model
M is composed of all datasets except the one that is taken as scene.

7 Experiments and Results

Two cameras were used for the experiments: the IFM O3D100 (www.ifm.de)
and the SR-3000 (www.swissranger.ch). The O3D100 camera provides 50x64 pixels,
whereas the SR-3000 has 176x144 pixels. Both cameras have been added to our
experimental setup of the DLR 3D-Modeller [12], which was attached to the TCP
of a standard industrial robot, type KUKA KR 16 (see figure 1 for an image of
the sensor configuration on the rails). The robot has moved to different positions
to take depth images for calibrating the cameras as well as for reconstructing the
objects. The TCP pose for every depth image was given by the robot control with
a precision of 1mm in translation and 0.1◦ in rotation.

7.1 Calibration Results
About 10 depth images with significant angle and different distances to the plane

were used for the estimation of the desired sensor-to-tcp frame and the coefficients of
the error model. Additional shots were taken to verify the calibration results. Every
shot in this calibration step was taken 20 times to eliminate the noise by averaging
the depth. Thus, the standard deviation for one pixel at an integration time of
8000µs was decreased from 4.1mm to 3.4mm (SR-3000) and from 2.2mm to 0.9mm
(O3D100). In a verification step the corrected measurements from the different
shots (respectively planes) were projected into the world coordinate system. If
these measurements were error free and the sensor-to-tcp transformation correct,
the measured planes would fit perfectly. The distances ∆ and angles α between
the measurements of a plane from different perspectives would then be zero. Table
1 shows the photogrammetric calibration[11] (PP) and the depth calibration (PD)
results for the two TOF cameras. Obviously, the single photogrammetric calibration
causes distance errors of 18mm to 35mm. The proposed error model proves to be
valuable and the applied calibration nearly halves the errors. For both cameras
a circular error and a signal propagation delay were detected. Within a limited
working range the circular error is approximated by a linear function. As seen in



Precise Surface Reconstruction with TOF Cameras 7

SR-3000 IFM O3D100
Type ∆/mm α/◦ ∆/mm α/◦

PP1 17.76 3.48 27.71 3.14
PP2 18.71 3.94 35.90 3.36
PD1 10.32 1.58 11.90 1.48
PD2 3.86 1.58 9.05 1.37

Table 1 Verification on all taken shots of one smooth white wall from different perspec-
tives signed with (1) and on the calibration shots signed with (2) (parameters taken from:
PP - photogrammetric calibration, PD = depth calibration)

table 1, the results obtained from the O3D100 camera are nearly as good as those
of the SR-3000. Due to the low resolution and the small amount of data points,
which are used for the calibration of the O3D100 camera, there is a difference in
translational error of about 6mm. In conclusion, the measurements show that a
calibration step is necessary and helpful, but does not totally compensate all error
sources.

7.2 Surface Reconstruction Results
The visual impression of the merged range images give a first qualitative state-

ment on the outcomes. Further, a cube of known size is used, which allows to
quantify the remaining measurement error. For the five cube faces and the plat-
form the individual plane parameters (normal of plane and distance to origin of
world coordinate system) are computed for each different view. The deviation of
the distances and angles between those planes from the ground truth distance of
140mm is used as an indicator of the calibration and registration performance. The
performance is evaluated in three categories: The distance and angle between oppo-
site cube faces (opp.), the angle and distance of interleaved cube faces (int.) and the
angle between adjacent cube faces (adj.). Firstly, depth images were merged by the

Cal. Cube SR-3000 IFM O3D100
Type Faces ∆/mm σ/mm ∆/◦ σ/◦ ∆/mm σ/mm ∆/◦ σ/◦

PP opp. 94.99 32.54 7.33 2.94 137.94 6.88 6.33 5.48
PP int. 7.66 3.89 7.73 2.54 5.87 5.00 4.69 2.50
PP adj. - - 86.48 2.28 - - 82.36 3.83
PD opp. 134.27 4.19 1.69 1.29 139.28 5.34 4.89 5.08
PD int. 5.18 1.57 3.94 1.77 4.04 2.61 3.31 2.12
PD adj. - - 87.86 1.73 - - 84.11 3.44

PD (ICP) opp. 133.15 3.87 2.50 1.71 138.59 3.81 4.82 5.17
PD (ICP) int. 0.76 0.58 4.69 2.01 2.49 1.71 3.10 2.09
PD (ICP) adj. - - 87.56 1.83 - - 83.89 3.27

Table 2 Merged results of opposed (opp.) interleaved (int.) and adjacent (adj.) cube
faces.

means of undistorting the depth images, correcting the depth values and projecting
3D points into the world coordinate system based on the calibration alone. For the
SR-3000 camera the cube reconstruction with extrinsic depth calibration (PD) is
highly enhanced with respect to photogrammetric calibration (PP) (see table 2).
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However, the distance between opposite faces diverges from the ground truth by
6mm (45mm before). This shrinking of the object results from the mean calibration
error of 10mm (see Table 1). The remaining distance error causes a lateral error
and mainly affects the size of the merged object but not the orientation. In contrast
to photogrammetric calibration (PP) the faces are well orientated, so that the angle
decreased from 7◦ to 2◦. For the O3D100 camera, the distance between opposite
faces almost agrees with the ground truth. Despite an average calibration error of
12mm, a shrinking of the object is not observed at the same order of magnitude.
This effect scales with the aperture angle, which is 34◦ in contrast to the 47.5◦ of
the SR-3000.

Figure 3 Cube surface reconstruction with both TOF cameras: SR-3000 (single in-
tensity shot [left], merging point cloud and shaded object [2 × centre]), O3D100 (shaded
object [right])

The ICP approach was used to relax errors among all measurements. Table 2
reports the performance indicators for the ICP application and shows a marginal
improvement for all indicators. The highest gain is observed for the interleaved
faces whose mean distances to each other decrease from 6.8mm to 2.2mm for the
SR-3000 and from 4mm to 2.5m for the O3D100. The distance between the the
opposite faces decreases, too. In case of the ICP algorithm the only constraint for
the cube size is the width of a cube face in a single shot. Since the edge filtering
truncates the widths of the cube faces by removing edges, the ICP algorithm can
push the point clouds closer together than required. The reconstructed model shows
a precision of 6mm up to 1mm in translation and 1.7◦ to 4.9◦ in rotation. The ICP
further increases the consistency of the object with an accuracy of the interleaved
cube faces up to 2.5mm in translation and 3.1◦ in rotation. Figure 4 presents the
reconstruction results for an arbitrary model of a camel.

Figure 4 Surface reconstruction of a camel (digital image [left]) with both TOF cam-
eras: SR-3000 ( shaded object [2 × centre] ) and O3D100 (shaded object [right]);

8 Conclusion

In this paper a surface reconstruction application using TOF cameras was pre-
sented. Two measures are important in order to reach high precision. First, a novel
advantageous calibration method, which estimates the depth correction parameters
as well as the eye-to-hand transformation simultaneously, was developed. This
estimation simplifies the calibration requiring only distance measurements. The
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second measure comprises necessary data processing, i.e. smoothing, edge filtering
and pose relaxation. These measures have been illustrated by the reconstruction
of a concrete example, a cube model. An overall mean precision and accuracy
of approximately 3mm in translation and 3◦ in rotation has been achieved, that
enables a simple merging of shots for surface reconstruction with high precision,
especially by the means of magnitude and pose of the object, which is demanded for
robotic interaction, i.e. visual servoing or grasping. A further ICP processing in-
creases the consistency and accuracy respectively required by tracking or modelling
applications.
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