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Abstract

This paper considers the use of stereo vision in struc-
tured environments. Sharp discontinuities and large un-
textured areas must be anticipated, but complex or natu-
ral shapes of objects and fine structures should be handled
as well. Additionally, radiometric differences of input im-
ages often occur in practice. Finally, computation time is
an issue for handling large or many images in acceptable
time. The Semi-Global Matching method is chosen as it
fulfills already many of the requirements. Remaining prob-
lems in structured environments are carefully analyzed and
two novel extensions suggested. Firstly, intensity consis-
tent disparity selection is proposed for handling untextured
areas. Secondly, discontinuity preserving interpolation is
suggested for filling holes in the disparity images that are
caused by some filters. It is shown that the performance of
the new method on test images with ground truth is compa-
rable to the currently best stereo methods, but the complex-
ity and runtime is much lower.

1. Introduction
Structured environments can contain many difficulties

for stereo vision. There are often sharp depth discontinu-
ities and large untextured areas. However, there may also be
more natural, rounded or fine structured objects like chairs
or plants. All of these situations need to be handled for
computing accurate disparity images for applications like
reconstruction. Additionally, radiometric differences of in-
put images can often not be avoided in practice, especially
if individual images are taken at different times and auto-
calibrated later. Finally, processing time is often an impor-
tant issue for processing either large or many images in ac-
ceptable time.

Section 2 reviews some stereo algorithms that currently
produce the best results. The Semi-Global Matching (SGM)
method is selected as it addresses already most of the re-
quirements. SGM is reviewed and its behavior analyzed on
images in structured environments in Section 3. Two novel

refinements are suggested for tackling specific problems in
Section 4. Finally, Section 5 shows the performance of the
new method on standard test images as well as images of
typical indoor scenes.

2. Literature review
Since the publication of Scharstein and Szeliski’s tax-

onomy of stereo algorithms [9], many authors have partic-
ipated in an on-line evaluation [8]. The addition of more
complex test images [10] has lead to the new Tsukuba,
Venus, Teddy and Cones data set. Especially the last two
image pairs are quite complex and realistic.

Almost all of the currently top-ranked algorithms [11,
13, 2, 5, 7, 14] on this data set define a global energy func-
tion that is minimized for finding the disparities. This en-
ergy function always includes a data term and a smooth-
ness term. The former evaluates the matching of individ-
ual pixels, while the latter supports piecewise smooth dis-
parity selections. Some methods use more terms for pe-
nalizing occlusions [2, 7] or alternatively treating visibility
[11, 13]. Furthermore, some methods [11, 13, 14, 5] enforce
the consistency of the disparity of all used stereo images
(e.g. left/right consistency or symmetry).

The strategies for finding the minimum of the global en-
ergy function differ. The classical approach is Graph Cuts
[7], which casts the problem into finding the minimum cut
in a graph. Belief Propagation [11] iteratively sends mes-
sages between neighboring nodes in the four connected im-
age grid for minimizing the global cost. One of the best
ranked variant forces symmetrical matching and uses seg-
mentation as soft constraints. Layered approaches [2, 14]
perform image segmentation and use the assumption that
disparities vary smoothly (e.g. planar) within each segment.
An initialization by a simple method like correlation is typi-
cally complemented by an iterative refinement of the dispar-
ity selection. Furthermore, there are also methods [13] that
combine Belief Propagation with segmentation and plane
fitting in an iterative loop. Finally, the Semi-Global Match-
ing [5] method sums for each pixel the costs along 1D paths
from several directions. In contrast to all other methods,
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its pixelwise matching cost is not based on comparing in-
tensities directly, but on Mutual Information [12] between
the stereo images. This makes it very robust against radio-
metric differences and some violations of the assumption of
lambertian surfaces, e.g. reflections.

The complexity of a global algorithm is usually high and
can depend on the complexity of the scene [2]. Conse-
quently, most of these methods [11, 13, 2, 7] have a runtime
of at least a minute on typical images. In contrast, the Semi-
Global Matching method [5] has a complexity of O(WHD)
(i.e. number of pixels times disparity range) and a runtime
of just 1-2s under similar conditions.

The Semi-Global Matching method has been selected for
the discussed problem, due to its accuracy at depth discon-
tinuities, robustness of matching in the presence of radio-
metric differences and execution speed.

3. Semi-Global Matching (SGM)
A stereo algorithm uses a base image Ib and a match im-

age Im for calculating a disparity image D that corresponds
to the base image. It is assumed that the epipolar geometry
between the images is known. An epipolar line ebm(p,d) in
the match image is defined by the pixel p in the base image
and the disparity d as line parameter. For rectified images
ebm(p,d) = [px−d,py]

T . It is noteworthy that certain cam-
era geometries (e.g. pushbroom cameras that do not move
on a straight path) do not allow an exact rectification of the
resulting images [6]. Therefore, a general definition using
arbitrarily defined epipolar lines is preferred.

3.1. Review

The Semi-Global Matching (SGM) method [5] aims to
determine the disparity image D, such that the global energy
E(D) is a minimum.

E(D) = ∑
p

(C(p,Dp) + ∑
q∈Np

P1 T[|Dp−Dq|= 1]

+ ∑
q∈Np

P2 T[|Dp−Dq|> 1])
(1)

The first term of equation (1) calculates the sum of a
pixelwise matching cost C(p,Dp) for all pixels p at their
disparities Dp. The cost function can either be Birchfield
and Tomasi’s sampling insensitive intensity difference [1]
or Mutual Information [5]. The latter one has the advantage
that it takes complex relations between corresponding inten-
sities into account. This has been shown to be very robust
against radiometric differences that often occur in practice
[5, 6]. The function T[] is defined to return 1 if its argument
is true and 0 otherwise. Thus, the second term of the energy
function penalizes small disparity differences of neighbor-
ing pixels Np of p with the cost P1. Similarly, the third term

penalizes larger disparity steps (i.e. discontinuities) with a
higher penalty P2.

The value of P2 does not depend on the size of the dis-
parity step, which preserves discontinuities. However, it has
been found advantageous to adapt P2 to the local intensity
gradient, because discontinuities are often visible as inten-
sity changes. Thus, the penalty should be reduced where
intensities differ, which is expressed as P2 =

P′2
|Ibp−Ibq| .

x, y

d

x

y

(a) Minimum Cost Path Lr(p, d)

p

p

(b) 16 Paths from all Directions r

Figure 1. Aggregation of costs.

Finding the global minimum of equation (1) for the
whole 2D image is known to be an NP-complete Problem.
SGM calculates E(D) efficiently along 1D paths from either
8 or 16 directions towards each pixel as shown in Figure 1.
The cost to reach a pixel p at the disparity d from the direc-
tion r is defined according to (1) recursively as,

Lr(p,d) = C(p,d) + min(Lr(p− r,d),

Lr(p− r,d−1) + P1,Lr(p− r,d + 1) + P1,

min
i

Lr(p− r, i) + P2)−min
k

Lr(p− r,k).
(2)

The first term is the pixelwise matching cost for the cur-
rent pixel. The second term adds the minimum of the cost
at the previous pixel on the path, including the appropri-
ate penalty. According to equation (1), there is no penalty
added to the cost at the same disparity. The penalty P1 is
added to costs at the next lower or higher disparity and P2
is added, if a cost at another disparity is the minimum. The
last term of function (2) does not have any influence on the
subsequent calculation, but it guarantees that L≤Cmax +P2.
Without this term, L would always increase along each path
and its value could exceed the used data type. The calcula-
tion of this function can be done in O(ND) steps, where N
is the number of pixels along the path and D is the number
of disparities.

The costs along the paths from all directions r are
summed S(p,d) = ∑r Lr(p,d). For each pixel p the dispar-
ity d is chosen that corresponds to the minimum cost, i.e.
Dp = argmind S(p,d). For sub-pixel estimation, a quadratic
curve is fitted through the neighboring costs (i.e. at the next
higher and lower disparity) and the position of the mini-
mum is calculated. The result is a disparity image Db that
corresponds to the base image Ib.
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(a) Office Image (b) Teddy Image

Figure 2. SGM results on images with untextured background areas. Black represents filtered (i.e. invalid) disparities.

The disparity image Dm that corresponds to the match
image Im can either be derived from the same cost array S()
or calculated from scratch. A consistency check compares
the disparities of Db with Dm and invalidates those that dif-
fer, i.e.

Dp =

{
Dbp if |Dbp−Dmq| ≤ 1, q = ebm(p,Dbp),
Dinv otherwise.

(3)

The complexity of the method is linear to the number of
pixels W H and the disparity range D, i.e. O(WHD), if inter-
mediate costs are reused appropriately. An efficient imple-
mentation temporarily stores the costs S() of all pixels and
all disparities. The regular structure of calculation and an
appropriate choice of data types allows speeding up compu-
tation using Single Instruction, Multiple Data (SIMD) com-
mands that are available in modern processing units.

Tests on several stereo images with ground truth showed
that the quality of disparity images of SGM is comparable
to that of global methods [8]. However, its complexity is
equivalent to typical local methods and its execution speed
is nearly real time with just 1s on small images [5].

SGM has been applied to the problem of fully automat-
ically reconstructing huge urban areas (e.g. whole cities)
from high resolution images of an airborne multi-line push-
broom camera [6]. This application benefits not only
from the accuracy of SGM at sharp object boundaries (e.g.
houses), but also from the Mutual Information based match-
ing cost, because the used images have high radiometric dif-
ferences. More than 17000 km2 of aerial images in resolu-
tions between 15-20cm/pixel have already been processed
by SGM.

3.2. Problems in structured environments

Despite the success of SGM on aerial images, there are
some problems in the presence of large, partly untextured
background areas as typically found in structured environ-
ments. Figure 2 shows two examples.

Both disparity images contain well handled untextured
foreground areas like the journal in Figure 2a or the chim-

ney and walls of the house in Figure 2b. However, fore-
ground object boundaries are blurred into untextured back-
ground areas, as seen at the head in Figure 2a and the back-
ground on the right of the Teddy in Figure 2b. In contrast,
object borders in front of textured background appear cor-
rectly. It is interesting to note that these kinds of problems
do not occur in the application of aerial imaging. This is
probably because at the used level of resolution, there are
no really untextured areas in aerial images, at least not be-
hind foreground objects.

SGM handles untextured areas by the smoothness term
in equation (1), which penalizes the change of disparity by
P. Disparity changes are accepted, if the sum of pixel-
wise matching cost C(p,di) at another disparity di and the
penalty P is lower than the cost C(p,d). The reason for the
change of pixelwise matching cost of nearby pixels is tex-
ture. Thus, untextured areas are interpolated smoothly, by
using the support of neighboring, better textured areas.

A problem arises if foreground objects are in front of a
partly untextured background. In this case, the required step
from foreground to background disparity can be placed any-
where next to or within the untextured area without chang-
ing the global energy (1). Thus, the placement of the dis-
parity step mainly depends on noise. The correct placement
can be supported by making the penalty P2 adaptive to in-
tensity changes, such that disparity changes within untex-
tured areas are more costly [5]. Thus, placing the disparity
change at the border of the untextured area is preferred.

However, the adaptive penalty has already been used for
calculating the disparity images of Figure 2. The reason for
the still seen misplaced object borders is that SGM propa-
gates the costs along straight paths. In Figure 2b, there are
no straight paths leading from the textured background to
the place between the arm and leg on the right side of the
Teddy. Thus, the algorithm has at this place no information
that the disparity should not be continued smoothly between
the arm and the leg. Equally difficult is the background
around the head in Figure 2a. Additionally, the number of
paths that meet in a point and the magnitude with which
they suggest a certain disparity influences the correct place-
ment of a disparity step. The adaptive penalty can only work
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correctly, if the cost is gathered from all directions equally
well, which is usually the case with small, compact untex-
tured areas.

Additionally, it is undesirable for some applications like
reconstruction to have invalid disparities (e.g. black areas in
Figure 2), as caused by the left/right consistency check of
SGM. These areas need to be interpolated, without smooth-
ing discontinuities of the disparity image.

4. Proposed refinements of SGM
The problems at partly untextured background areas and

the interpolation of invalid disparities have to be solved for
applying SGM successfully on images of structured envi-
ronments. Furthermore, it is important that the solutions
must not increase the complexity of SGM, as efficiency is
one of the major advantages of SGM over methods with
comparable quality.

4.1. Intensity consistent disparity selection

The solution for avoiding the blurring of foreground ob-
jects into partly untextured background requires some as-
sumptions:

1. Discontinuities in the disparity image do not occur
within untextured areas.

2. On the same physical surface as the untextured area is
also some texture visible.

3. The surface of the untextured area can be approxi-
mated by a plane.

The first assumption is mostly correct, as depth disconti-
nuities usually cause at least some visual changes in inten-
sities. Otherwise, the discontinuity would be undetectable.
The second assumption states that there are at least some
points on an untextured surface for which the disparity can
be determined. The disparity of an absolutely untextured
background surface would be indeterminable. The third
assumption is clearly the weakest. Its justification is that
identifying untextured areas as areas of nearly constant in-
tensity will result in patches that can be treated as planar.
Untextured surfaces with varying distance usually appear
with varying intensities. Piecewise constant intensity can
be treated as piecewise planar.

The identification of untextured areas is done by a fixed
bandwidth Mean Shift Segmentation [3] on the intensity im-
age Ib. The radiometric bandwidth σr is set to P1, which is
usually 4. Thus, intensity changes below the smoothness
penalty are treated as noise. The spatial bandwidth σs is set
to a rather low value for fast processing (i.e. 5). Further-
more, all segments that are smaller than a certain threshold
(i.e. 100 pixels) are ignored, because small untextured areas

are usually handled well by SGM as discussed in Section
3.2. The segmentation result of the Teddy image is shown
in Figure 3a.

(a) Intensity segmentation (b) Disparity segmentation

Figure 3. Intensity and subsequent disparity segmentation.

A feature of SGM is the propagation of disparities from
textured into untextured areas (Section 3.2). This feature,
together with the assumption that some neighboring tex-
tured areas are on the same surface (i.e. assumption 2), lead
to the realization that some disparities within each segment
Si should be correct. Furthermore, using penalties P2 that do
not depend on the size of the disparity change prefers sud-
den disparity changes rather than smooth ones. Thus, sev-
eral hypotheses for the correct disparity of Si can be iden-
tified by segmenting the disparity within each segment Si.
This is done by simple segmentation, which connects neigh-
boring equivalent pixels within the 4-connected image grid
[4]. Equivalent pixels differ by at most 1 disparity. This
fast segmentation results in several segments Sik for each
segment Si as shown in Figure 3b.

Next, the surface hypotheses Fik are created by calculat-
ing the best fitting planes through the disparities of Sik. The
choice for planes is based on assumption 3. Very small seg-
ments (i.e.≤ 12 pixel) are ignored, as it is unlikely that such
small patches belong to the correct hypothesis. Then, each
hypothesis is evaluated within the area of Si by,

Eik(D′) = ∑
p∈Si\occ

(C(p,D′p) + ∑
q∈Np

P1 T[|D′p−D′q|= 1]

+ ∑
q∈Np

P2 T[|D′p−D′q|> 1])

(4)

D′p =

{
Fik(p) if p ∈ Si

Dp otherwise.
(5)

Thus, all disparities within segment Si are replaced by
the surface hypothesis and the cost Eik calculated for all
pixels within Si. The main difference to equation (1) is that
pixelwise matching costs are not considered at occlusions.
A pixel p is occluded, if another pixel with higher disparity
maps to the same pixel q in the match image. This detec-
tion is performed by first mapping p into the match image
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by q = ebm(p,D′p). Then, the epipolar line of q in the base
image emb(q,d) is followed for d >D′p. Pixel p is occluded
if there is an intersection of the epipolar line with the dis-
parity surface defined by D′p.

For each constant intensity segment Si the surface hy-
pothesis Fik with the minimum cost Eik is chosen. All dis-
parities within Si are replaced by values on the chosen sur-
face for making the disparity selection consistent to the in-
tensities of the base image (i.e. fulfilling assumption 1).

Fi = Fik′ with k′ = argmin
k

Eik (6)

D′p =

{
Fi(p) if p ∈ Si

Dp otherwise.
(7)

The complexity of fixed bandwidth Mean Shift Segmen-
tation of the intensity image and the simple segmentation of
the disparity image is linear in the number of pixels. Calcu-
lating the best fitting planes involves visiting all segmented
pixels. Testing of all hypotheses requires visiting all pixels
of all segments, for all hypotheses (i.e. maximum N). Ad-
ditionally, the occlusion test requires going through at most
D disparities for each pixel.

Thus, the upper bound of the complexity is O(WHDN).
However, segmented pixels are usually just a fraction of the
whole image and the maximum number of hypotheses N
for a segment is commonly small and often just 1. In the
latter case, it is not even necessary to calculate the cost of
the hypothesis.

The presented approach is similar to some other methods
[2, 13, 14] as it uses image segmentation and plane fitting
for refining an initial disparity image. In contrast to other
methods, the initial disparity image is due to SGM already
quite accurate so that only untextured areas above a certain
size are modified. Thus, only critical areas are tackled with-
out the danger of corrupting probably well matched areas.
Another difference to other methods is that disparities of
the considered areas are selected in one step by consider-
ing a number of hypotheses that are inherent in the initial
disparity image. There is no time consuming iteration.

4.2. Discontinuity preserving interpolation

The left/right consistency check invalidates disparities
due to occlusions (e.g. p1 in Figure 4), but also due to other
kinds of mismatches (e.g. p2 in Figure 4). For interpolating
invalid disparities, both cases need to be treated differently.
Occlusions must not be interpolated from the occluder, but
only from the occludee to avoid incorrect smoothing of dis-
continuities. Thus, an extrapolation of the background into
occluded regions is necessary. In contrast, holes due to mis-
matches can be smoothly interpolated from all neighboring
pixels.

p1 p2 q2q1

ebm(p2, d)

ebm(p1, d)

x x

Disparity of Base Image Disparity of Match Image

d d

Figure 4. Disparity of the base and match image.

Occlusions and mismatches can be distinguished as part
of the left/right consistency check. Figure 4 shows that the
epipolar line of the occluded pixel p1 goes through the dis-
continuity that causes the occlusion and does not intersect
the disparity function Dm. In contrast, the epipolar line of
the mismatch p2 intersects with Dm. Thus, for each inval-
idated pixel, an intersection of the corresponding epipolar
line with Dm is sought, for marking it as either occluded or
mismatched.

Additionally to the consistency check, a segmentation
filter may be used that invalidates small disparity segments
(e.g. 20 pixel), because they are mostly due to errors. The
filtered disparities are also marked as mismatches. Figure 5
shows the occlusions and mismatches of the Teddy images
that were identified by the consistency check.

Figure 5. Occluded pixel (black) and mismatches (white).

For interpolation purposes, mismatched pixel areas that
are direct neighbors of occluded pixels are treated as occlu-
sions, because these pixels must also be extrapolated from
valid background pixels. Interpolation is done by propagat-
ing valid disparities through neighboring invalid disparity
areas. This is done similarly to SGM along paths from 8
directions. For each invalid pixel, all 8 values vpi are stored.
The final disparity image D′ is created by,

D′p =





seclowi vpi if p is occluded,
mediani vpi if p is mismatched,
Dp otherwise.

(8)

The first case ensures that occlusions are interpolated
from the lower background by selecting the second lowest
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Venus (434x383x32) Teddy (450x375x64) Cones (450x375x64)Tsukuba (384x288x16)

Results of CSGM (HMI)

Figure 6. Results of the new method (CSGM) on stereo images with ground truth [9, 10].

Algorithm Rank Tsukuba Venus Teddy Cones
nonoc all disc nonoc all disc nonoc all disc nonoc all disc

AdaptingBP 1.7 1.11 1.37 5.79 0.10 0.21 1.44 4.22 7.06 11.80 2.48 7.92 7.32
DoubleBP [13] 2.3 0.88 1.29 4.76 0.14 0.60 2.00 3.55 8.71 9.70 2.90 9.24 7.80
SymBP+occ [11] 4.9 0.97 1.75 5.09 0.16 0.33 2.19 6.47 10.70 17.00 4.79 10.70 10.90
Segm+visib [2] 5.0 1.30 1.57 6.92 0.79 1.06 6.76 5.00 6.54 12.30 3.72 8.62 10.20
CSGM 5.9 2.61 3.29 9.89 0.25 0.57 3.24 5.14 11.80 13.00 2.77 8.35 8.20
RegionTreeDP 6.6 1.39 1.64 6.85 0.22 0.57 1.93 7.42 11.90 16.80 6.31 11.90 11.80
AdaptWeight 7.1 1.38 1.85 6.90 0.71 1.19 6.13 7.88 13.30 18.60 3.97 9.79 8.26
SemiGlob [5] 8.8 3.26 3.96 12.80 1.00 1.57 11.30 6.02 12.20 16.30 3.06 9.75 8.90
GC+occ [7] 10.4 1.19 2.01 6.24 1.64 2.19 6.75 11.20 17.40 19.80 5.36 12.40 13.00
Layered [14] 10.5 1.57 1.87 8.28 1.34 1.85 6.85 8.64 14.30 18.50 6.59 14.70 14.40
Currently 12 more entries ...

Table 1. Table from Middlebury Stereo Evaluation [8] using a maximum disparity difference threshold of 1.

value, while the second case emphasizes the use of all infor-
mation. The median is used instead of the mean for main-
taining discontinuities in cases where the mismatched area
is at an object border. It can be seen in Figure 5 that there
are a few mismatched areas at the right border of objects
(i.e. un-occluded areas). In contrast to occlusions, there is
no preference to either a lower or higher disparity.

The presented interpolation method has the advantage
that it is independent of the used stereo matching method.
The only requirements are a known epipolar geometry and
the calculation of the disparity images for the base and
match image for distinguishing between occlusions and
mismatches.

The complexity of interpolation is linear to the number
of pixels, i.e. O(W H), as there is a constant number of op-
erations for each invalid pixel.

5. Experimental results

The proposed Consistent Semi-Global Matching
(CSGM) method has been tested on stereo images with
ground truth as well as on stereo images of structured
environments.

5.1. Stereo images with ground truth

Figure 6 shows four stereo images with ground truth
[9, 10] on which many recent stereo algorithms have been
tested. The disparity images have been calculated with con-
stant parameters of CSGM on all images. Hierarchical Mu-
tual Information (HMI) has been chosen as matching cost,
which has its main benefit on the Cones images [5]. It can
be seen that the critical untextured area on the right of the
Teddy as well as all other untextured areas are handled well.

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), New York, NY, USA, June 17-22, 2006.



Furthermore, all discontinuities appear sharp and small de-
tails of objects are maintained.

The results have been submitted to the Middlebury
Stereo Evaluation [8] and compared to other stereo meth-
ods. The evaluation compares the disparity images with the
corresponding ground truth individually at non-occluded ar-
eas, at all pixels and near discontinuities. Pixels, where the
disparity differs by more than 1 from the ground truth are
counted as errors. Table 1 shows the errors in percent of the
corresponding area for the currently top-ranked algorithms.

It can be seen that the proposed refinements of SGM
reduce the errors compared to SGM (i.e. referred to as
SemiGlob in Table 1). The new method is the second best
on the Cone images and performs quite well on Venus and
Teddy. It does not perform as well as some other methods
on Tsukuba, which results in the 5th place of currently 22
algorithms. However, reducing the maximum disparity dif-
ferences between calculated disparities and the ground truth
to 0.75 or 0.5 rises CSGM to the best performing algorithm
on these test images. The reason is probably the lack or
bad performance of sub-pixel disparity estimation of other
algorithms. This demonstrates the the accuracy of CSGM.

The execution time of SGM increases by the proposed
extensions by about 30-50% on the test images of Figure 6.
Most of the time is consumed by Mean Shift Segmentation.
The total execution time on the Teddy or Cones images with
64 pixels disparity range is just a few seconds on a 2.8GHz
PC. This is much lower than the execution time of the most
other top-ranked algorithms.

5.2. Stereo images of structured scenes

Figure 7 shows a few examples of structured environ-
ments, which were taken from a stereo sequence of a walk
through an indoor environment. The disparity images with-
out the proposed extensions (i.e. SGM) are shown in the
second row. It can be seen that object borders in front of
untextured areas appear fuzzy. The third row shows the dis-
parity images with the proposed intensity consistent dispar-
ity selection. Object borders in front of untextured areas
appear much cleaner and more correct, especially in the of-
fice image. Black areas represent unknown disparities, due
to occlusions or filtered mismatches. The result of interpo-
lating these areas is shown in the last row. Object borders
are maintained during interpolation. Fine structures like at
the Chairs or the small objects in the Kitchen appear well
maintained.

5.3. Limitations of the method

Despite the obvious improvements due to the proposed
extensions of SGM, there are cases in which they can fail.
The circle in disparity image of the Office scene in Figure 7
marks a place where a part of the poster at a column in front
of the wall is wrongly labeled with the same depth as the

wall. This happens, because there is no visual change be-
tween the background wall and the white part of the poster
(violation of the first assumption in Section 4.1). Thus, the
method tries to find a common plane for the background
and part of the foreground.

The circles in the disparity images of the other scenes
mark places where the disparities of an untextured area are
wrong. All of these errors are near image borders. At these
places, the chances that SGM has propagated correct dispar-
ities into the untextured area is reduced as only a part of the
untextured area and not the complete borders of it are seen.
For the same reason, testing of different hypothesis is more
error prone. Due to these reasons, it may be better to set
untextured areas at image borders to invalid (i.e. unknown).

6. Conclusion

It has been shown that the proposed intensity consistent
selection of disparities as well as the discontinuity preserv-
ing interpolation of disparities improve the performance of
SGM especially in structured environments.

The new CSGM method performs accurate matching and
produces sharp object boundaries, even in the presence un-
textured background areas. It can handle complex shapes
and fine structures in the presence of texture and falls back
to a planar model at untextured areas only. Possible radio-
metric differences are handled robustly by Mutual Informa-
tion as in SGM. Left/right consistency checking and sub-
pixel estimation is performed. Furthermore, invalid dispar-
ities are interpolated in a discontinuity preserving way.

A comparison has shown that CSGM can compete with
the currently top-ranked stereo algorithms, but at a much
lower complexity and runtime. These features make CSGM
a very valuable tool for many practical situations.

References
[1] S. Birchfield and C. Tomasi. Depth discontinuities by pixel-

to-pixel stereo. In Proceedings of the Sixth IEEE Interna-
tional Conference on Computer Vision, pages 1073–1080,
Mumbai, India, January 1998.

[2] M. Bleyer and M. Gelautz. A layered stereo matching algo-
rithm using image segmentation and global visibility con-
straints. ISPRS Journal of Photogrammetry and Remote
Sensing, 59(3):128–150, 2005.

[3] D. Comaniciu and P. Meer. Mean shift: A robust approach
toward feature space analysis. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 24(5):1–18, May 2002.

[4] E. R. Davis. Machine Vision: Theory, Algorithms, Practical-
ities. Academic Press, 2nd edition, 1997.

[5] H. Hirschmüller. Accurate and efficient stereo processing by
semi-global matching and mutual information. In IEEE Con-
ference on Computer Vision and Pattern Recognition, vol-
ume 2, pages 807–814, San Diego, CA, USA, June 2005.

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), New York, NY, USA, June 17-22, 2006.



(d) Kitchen(c) Chairs(b) Table(a) Office

Results of SGM

Results of CSGM

Results of CSGM, without interpolation

Figure 7. Examples of SGM and CSGM on images of structured environments.

[6] H. Hirschmüller, F. Scholten, and G. Hirzinger. Stereo vi-
sion based reconstruction of huge urban areas from an air-
borne pushbroom camera (hrsc). In Proceedings of the 27th
DAGM Symposium, volume LNCS 3663, pages 58–66, Vi-
enna, Austria, August/September 2005. Springer.

[7] V. Kolmogorov and R. Zabih. Computing visual correspon-
dence with occlusions using graph cuts. In International
Conference for Computer Vision, volume 2, pages 508–515,
2001.

[8] D. Scharstein and R. Szeliski. Middlebury online stereo eval-
uation. www.middlebury.edu/stereo.

[9] D. Scharstein and R. Szeliski. A taxonomy and evaluation
of dense two-frame stereo correspondence algorithms. Inter-
national Journal of Computer Vision, 47(1/2/3):7–42, April-
June 2002.

[10] D. Scharstein and R. Szeliski. High-accuracy stereo depth
maps using structured light. In IEEE Conference for Com-

puter Vision and Pattern Recognition, volume 1, pages 195–
202, Madison, Winsconsin, USA, June 2003.

[11] J. Sun, Y. Li, S. Kang, and H.-Y. Shum. Symmetric stereo
matching for occlusion handling. In IEEE Conference on
Computer Vision and Pattern Recognition, volume 2, pages
399–406, San Diego, CA, USA, June 2005.

[12] P. Viola and W. M. Wells. Alignment by maximization of
mutual information. International Journal of Computer Vi-
sion, 24(2):137–154, 1997.

[13] Q. Yang, L. Wang, R. Yang, H. Stewenius, and D. Nister.
Stereo matching with color-weighted correlation, hirarchical
belief propagation and occlusion handling. In IEEE Con-
ference on Computer Vision and Pattern Recognition, New
York, NY, USA, 17-22 June 2006.

[14] C. L. Zitnick, S. B. Kang, M. Uyttendaele, S. Winder, and
R. Szeliski. High-quality video view interpolation using a
layered representation. In SIGGRAPH, 2004.

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), New York, NY, USA, June 17-22, 2006.


