Introduction to the Workshop on Methods for Safer Surgical Robotics Procedures

Dr.-Ing. Rainer Konietschke
Robotics and Mechatronics Center, DLR
IROS 2011 September 30
Surgical Robotics

- Extend capabilities of the human through
 - Higher dexterity
 - Better precision
 - Comprehensive vision
 - Higher sensitivity

- Extract knowledge from previous surgeries
- Semiautonomous procedures
- Patient and procedure models
- Decision support functions

- Increase patient safety
Safety in the Surgical Context

WHO Definition of *Patient Safety:*

- Patient safety is the reduction of the risk of unnecessary harm associated with healthcare to an *acceptable minimum.*

- An *acceptable minimum* refers to the collective notions of
 - given current knowledge,
 - given resources available and
 - the context in which care was delivered weighed against the risk of non-treatment or other treatment.
Goals of our Workshop

We all work to achieve an increase in Patient Safety

- Where are the most painful frontiers of current knowledge and how can we expand them?

- How do we measure our achieved safety increases?

- Safety and costs?
Sessions

- Simulation and Modelling (Rainer)
- Haptics, Force Feedback and Human Robot Interaction (Paolo)
- Operating Room Sensing and Reasoning (Stefan)
Session on Simulation and Modelling

- Robotic Surgery learning requirements: Simulation Based & Schoolhouse Training to Improve Safety
 Nikhil L. Shah DO
 MPH Director of Minimally-Invasive and Robotic Surgery, Department of Surgery
 Saint Joseph’s Hospital, Atlanta

- Robotic System Simulation and Modelling
 Stefan Jörg
 Robotics and Mechatronics Center, DLR, Germany

- Tissue modeling for Safer Robotic Interventions
 Prof. Allison Okamura
 Mechanical Engineering Dept., Stanford University

- Balancing Safety and Cost in Robotically Assisted Surgery
 Ph.D. Louai Adhami
 SimQuest LLC, Silver Spring
Session on Haptics, Force Feedback and Human Robot Interaction

- **Safe Human-Robot Interaction**
 Dipl.-Ing., MSc. Sami Haddadin
 Robotics and Mechatronics Center, DLR, Germany

- **Multimodal Haptics for Improved Safety in Robotic Surgery**
 Prof. Hannes Bleuler and Laura Santos-Carreras
 École Polytechnique Fédérale de Lausanne (EPFL), Robotic Systems Laboratory

- **Toward safe endonasal surgery using teleoperated continuum robots**
 Dr. Jessica Burgner
 Vanderbilt University, Medical & Electromechanical Design Laboratory, Nashville

- **Hybrid Actuation Approaches for Robotic Systems and Haptic Interfaces**
 Ph.D. Francois Conti
 Force Dimension / Stanford University, Artificial Intelligence Laboratory, Department of Computer Science
Session on Operating Room Sensing and Reasoning

- Operation Room Supervision for Safe Robotic Surgery with a Multi 3D-Camera Setup
 Dipl.-Inform. Philip Nicolai and Dr.rer.nat. Jörg Raczkowsky
 KIT, Institute of Process Control and Robotics, Medical group (MeGI)

- Vision-based Analysis of Conventional Surgical Procedures
 Prof. Darius Burschka and Oliver Ruepp
 TUM, Machine Vision and Perception Group, Germany

- Real-time 3D reconstruction: applications to collision detection and surgical workflow monitoring
 Prof. Dr. Nassir Navab and Dipl.-Inf. (FH) Stefan Holzer, M.Sc.
 TUM, Computer Aided Medical Procedures & Augmented Reality

- Human-machine Cooperation in the Operating Room
 Prof. Greg Hager and Ph.D. Nicolas Padoy
 The Johns Hopkins University, Department of Computer Science

- A Data Revolution for Robotic Surgical Safety
 Dr. Marco A. Zenati
 MD Harvard Medical School, Boston, MA
Schedule

8:45 - 10:25 Session on Simulation and Modelling

10:25 - 11:05 Coffee Break

11:05 - 12:45 Session on Haptics, Force Feedback and HRI

12:45 - 14:30 Lunch Break

14:30 - 15:45 Session on OR Sensing and Reasoning (1)

15:45 - 16:15 Coffee Break

16:15 - 17:30 Session on OR Sensing and Reasoning (2)

Each presentation: 20 Minutes + 5 Minutes discussion