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Abstract This paper shows that it is possible to determine analytically all singular
configurations of the 9-DoF DLR medical robot setup for minimally
invasive applications. It is shown that the problem can be devided
into the determination of the singularities of the general 7-DoF DLR
medical arm and of the 2-DoF surgical instrument, used in a minimally
invasive application. The formula of Cauchy-Binet is used to calculate
the singularities of the redundant medical arm, and an interpretation of
this formula for any serial redundant robot design is given.
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1. Introduction

In robotically assisted minimally invasive applications, a surgical robot
is used to access the operating field inside the human body through small
incisions with thin cylindrical instruments. The design of such robotic
devices for medical applications is liable to exceptionally high require-
ments in terms of safety and reliability. A thorough analysis of the
robot’s kinematic structure is important to ensure complete reachability
as well as the absence of any singular configuration inside the desired
workspace. The desired workspace is usually defined by the operator
during a planning step, and serves to determine the optimal robot setup
(Adhami, 2002; Konietschke et al., 2004). The robot setup comprises the
position and orientation of the robot base and the position of the entry
point into the human body as well as any adjustable DH parameter (as
for example adjustable instrument lengths).



The determination of the singular configurations of a robot is espe-
cially important in the case of teleoperation, where the exact path is
not known in advance. Though singular configurations can be detected
by monitoring certain manipulability measures as eg. in Yoshikawa,
1990; Konietschke et al., 2004, these measures are to the author’s knowl-
edge insufficient to signal vicinity to singular configurations. Since the
behaviour of robots near singularities is in most cases not very intuititive
for the operator, it is highly desirable to restrict the workspace admissi-
ble to the operator to a space that does not contain any singularities or
to control the robot in a way that singular configurations are avoided.
This is facilitated if an analytic description of all singularities of the
robot design is known, since the use of computationally cheap strategies
for singularity avoidance in analogy with well known strategies for joint
limit avoidance becomes possible.

In the next section, the kinematic structure of the considered robotic
system is presented. The singularities of the DLR medical arm and the
attached surgical instrument are given in the sections 3 and 4. Section 5
gives a short conclusion.

2. Kinematic structure

The kinematic structure of the considered robot with the attached
actuated instrument and the used coordinate frames are shown in Fig. 1.
The medical robot itself has 7DoF (φ1...7) and the attached instrument
disposes of two additional DoF (φ8,9). The kinematic chain of the robot
itself is denoted thereafter as K1, that of the actuated instrument as K2.

In the following, the problem of determining the singular configura-
tions of the robot kinematics is divided into two subproblems. This is
possible due to the restrictions at the entry point (see section 4).

3. The singular configurations of the DLR
medical arm

Written in the wrist frame {W}, the geometric Jacobian J of the
forward kinematics has the following form (Yoshikawa, 1990):

(

vW

ωW

)

= Jφ̇ =

(

J11 0

J21 J22

)

φ̇, with

(

vW

ωW

)

(1)

the translational and rotational velocity of the wrist frame {W} and

J11, J21 ∈ R
3×4, J22 ∈ R

3×3 . (2)

A singular configuration occurs if the following determinant equals
zero:



Figure 1. Kinematic description of the considered kinematic chains (K1 and K2)

∣

∣JJT
∣

∣ = 0. (3)

With the formula of Cauchy-Binet (see eg. Gantmacher, 1959), Eq. 3
can be transformed into a sum of squares of determinants:
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with Ji
mn the i-th submatrix (minor) obtained by suppressing column

i of the matrix Jmn. The terms of the first sum have a lower block
triangular form and can be combined to:
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In the last step, the formula of Cauchy-Binet is applied inversely.
Since the sum in Eq. 4 consists of squared summands, all of them have to
equal zero in a singular configuration. Simplifications are possible with
consideration of the rank of the Jacobian. Due to the special structure
of J, a sufficient condition for a singular configuration is:

rank (J11) < 3 . (6)



For the remaining singular configurations, a necessary condition is:

rank (J22) < 3 . (7)

Thus, the second sum of Eq. 4 has to be evaluated only for joint angles
that cause |J22| to be zero. The following singularities ei can thus be
determined, with k ∈ N:

e1 : φ4 = πk , (8)

e2 : φ2 =
π

2
+ πk ∧ φ3 =

π

2
+ πk , (9)

e3 : φ2 =
π

2
+ πk ∧ φ4 = ± arccos

(

−
a3

d5

)

+ 2πk , (10)

e4 : φ2 =
π

2
+ πk ∧ φ6 = πk , and (11)

e5 : φ5 =
π

2
+ πk ∧ φ6 = πk . (12)

The singular configuration e3 only appears if ‖a3‖ ≤ ‖d5‖. Details
about the zero points of the relevant determinants are given in the ap-
pendix. The classical “wrist singularity” (φ6 = πk) that occurs in many
6-DoF kinematic chains (consider for example a kinematic chain K ′

1
obtained with joint φ3 held constant) does only appear in conjunction
with additional conditions (Singularities e4,5). To illustrate this, the
pseudo inverse J+

a of the Jacobian Ja in the non singular configuration
φa = (0, 0, 0, π/2, 0, 0, 0)T as shown left in figure 2 is considered, writ-
ten in frame {I}:
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With d5/a3 ≈ 1, all joint velocities remain small for arbitrary rota-
tions of the tool tip. Particularly, pure rotation around an axis b as
shown left in Fig. 2 (perpendicular to the rotation axes of φ6 and φ7

and intersecting them), constituting the singular direction in case of a
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Figure 2. In case of the considered robot, pure rotations around the axis b can still
be performed even if φ6 = 0 (left). Only if also φ5 = π/2+πk, a singular configuration
occurs, as can be seen on the right where the norm ||J+

a
· (0, 0, 0, 0, 0, 1)T||2 is shown

as a function of the joint angle φ5.

kinematic chain as K ′

1 in this configuration, leads to the following (rea-
sonably small) joint velocities:

φ̇ = J+
a · (0, 0, 0, 0, 0, 1)T = (1, 0, −

d5

a3
, 0, −

d5

2 a3
, 0, −

d5

2 a3
)T. (14)

On the right of Fig. 2 the norm ||J+
a · (0, 0, 0, 0, 0, 1)T||2 is shown

as a function of the joint angle φ5 with all other angles remaining in
configuration φa.

3.1 Generalisation to the case of a serial robot
with n-fold redundancy

The singular configurations of a general, n-fold redundant robot can
be calculated by considering the roots of the following determinant:

∣

∣JJT
∣

∣ =

(m+n)!
2(m!)
∑

i=1

|Ji|
2 , J ∈ R

m×(m+n), (15)

with Ji representing all (m+n)!
2(m!) (different) matrices obtainable by sup-

pressing n columns of the Jacobian J. It can be seen from Eq. 15 that the
singularities of a serial redundant structure with m + n joints of which
n are redundant are identical with the intersection of the singularities of
all those robotic structures obtained by fixing any possible set of n joints



of the redundant structure. It has to be noted however, that already for
the case of a 2-fold redundant robot with 8 DoF, 8!

2·6! = 28 minors have
to be considered, each of which being usually a rather complex function
of the joint angles φ.

4. Singularities of the instrument in a minimally
invasive application

The kinematics in minimally invasive applications have the peculiarity
of a fulcrum point where the surgical instrument enters into the human
body. At that point, a constraint is imposed upon the system, resulting
in a loss of two DoF. In order to regain full dexterity inside of the patient,
an articulated instrument can be used, adding two DoF (φ8 and φ9, see
Fig 3) to obtain full 6 DoF at the distal end of the instrument. To
analyze the singular configurations introduced by the fulcrum point and
the two extra DoF of the instrument, the following Jacobian matrix is
considered:
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ż6

φ̇7

φ̇8

φ̇9

















, 6
9Jv =





















d′7−d7

d′7
0 0 0 0 0

0 1 0 0 0 0

0 0
d′7−d7

d′7
0 0 0

0 0 1
d′7

0 −c7 −s7c8

0 0 0 −1 0 s8

− 1
d′7

0 0 0 −s7 c7c8





















,

(16)
with v9 resp. ω9 the translational and rotational velocity of frame

{9} and (ẋ6, ẏ6, ż6) the translational velocities of frame {W}. The de-
terminant of 6

9Jv yields:

∣

∣

6
9Jv

∣

∣ = −
(d7,a − d7)

2 c8

d2
7,a

, (17)

and a singular configuration can be stated when

c8 = 0 , (18)

with the axes z7 and z9 aligned. The singular configuration that
occurs if

d7,a = d7 (19)

corresponds to a configuration where the fulcrum point is coincident
with the origin of {W}. In this case, translations of the frame {W} are
partly restricted by the constraint of the fulcrum point, and an altered
Jacobian matrix (a matrix that takes into consideration the rotation of



Figure 3. Kinematic description of the articulated instrument in MIS. The length
d′

7 signifies the distance between the wrist frame {W} and the fulcrum point.

frame {W} rather than its translation) would have to be considered.
Since, due to the design of the considered robot, the wrist joint cannot
be coincident with the fulcrum point this case is not further analyzed.

5. Conclusion

In this paper the analytical solution for the determination of all singu-
larities of the DLR medical robot with attached articulated instrument
is given. The use of the formula of Cauchy-Binet simplifies the equations
considerably and is suggested for the calculation of the singularities of
similar redundant kinematic structures. Particularly, the singular con-
figurations of both the DLR light weight robots II and III (7-DoF robots)
can be easily determined. As for the DLR medical robot, all singularities
except for e1 (φ4 = πk) and e5

(

φ5 = π
2 + πk ∧ φ6 = πk

)

are outside of
the joint limits.

Appendix

The relevant determinants yield:

|J22| = −s6,
∣
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The determinants equal zero for the following joint angles:
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