Virtual Physics

16.12.2014

Exercise 10: Stability Analysis

Task 1: (from Exam WS 2011/2012)

Given is the following system in ODE-form

$$
\begin{aligned}
& d x / d t=y / 4 \\
& d y / d t=-x^{2}-x-y
\end{aligned}
$$

There are two equilibrium points where the system remains in steady-state. These are

$$
x=0, y=0 ;
$$

and

$$
x=-1, y=0 ;
$$

Linearize the system around these two equilibrium points and state for each equilibrium point if it is stable, marginally stable or unstable. Make an eigenvalue analysis for this purpose.

Hint: For the linearization find a matrix A such that

$$
\binom{d x / d t}{d y / d t}=\left(\begin{array}{ll}
\text { a11 } & a 21 \\
a 12 & a 22
\end{array}\right) \quad\binom{x}{y}
$$

is a local approximation of the system

Task 2: (reduced version from Exam WS 2010/2011)

The eigenvalues of four linear systems $(\mathrm{dx} / \mathrm{dt}=\mathrm{Ax})$ are depicted.

Mark what is true (12 points):

