
 
Dr. Dirk Zimmer 

Virtual Physics 
 

21.10.2014 
 

Exercise 2:  Doing it the hard way  
 

Solution 
 
Task 1: Punch the equations into Modelica and simulate the model using Dymola 
 
Here is the Modelica Code  
 

 φ is replaced by phi 
 ω is replaced by w 
 α is replaced by z 
 τ is replaced by t 

 
model Exercise2 
  parameter Real MS = 250; 
  parameter Real MP = 70; 
  parameter Real R = 2.5; 
  parameter Real I = MP*R^2; 
  parameter Real G = -9.81; 
  Real s; 
  Real v; 
  Real aS; 
  Real fS; 
  Real phi; 
  Real w; 
  Real z; 
  Real t; 
  Real fn; 
  Real fz; 
  Real fP; 
  Real aP; 
initial equation  
  s = 0; 
  v = 0; 
  phi = 1.25; 
  w = 0; 
equation  
  aS = der(v); 
  v = der(s); 
  fS = MS*aS; 
  z = der(w); 
  w = der(phi); 
  t = I * z; 
  t = fn*R; 
  fn = MP*(sin(phi)*G - cos(phi)*aP); 
  fz = MP*R*w^2; 
  fP + sin(phi)*fz - cos(phi)*fn - MP*aP =  0; 
  aP = aS; 
  fP + fS = 0; 
end Exercise2; 
 



 
Task 2: Generate the simulation code by yourself. 
 
Now let us derive the state-space form. We can do that partly in Modelica. First, we separate 
the differential equations. By this, we see that s, v, phi, w form the states of our system. These 
variables can be supposed to be known. Hence, fz can be directly computed by the term:  
MP*R*w^2; 
 
The remaining 7 equations can be simplified, we substitute aS and aP by a and remove the 
equation aS = aP. We also substitute fP by –fS and remove the equation:  fP + fS = 
0. 
 
  a = der(v); 
  v = der(s); 
  z = der(w); 
  w = der(phi); 
  fz = MP*R*w^2; 
   
  fS = MS*a; 
  t = I * z; 
  t = fn*R; 
  fn = MP*(sin(phi)*G - cos(phi)*a); 
  -fS + sin(phi)*fz - cos(phi)*fn - MP*a =  0; 
 
This model still leads to the same simulation result. We can simplify it further. We substitute 
away all forces (except the already determined force fz). To this end, we replace fS by 
MS*a and t by I*z. It results that I*z = fn*R. Hence we can substitute any occurrence 
of fn by I/R*z or better: MP*R*z. Now a system of two equations remains to be solved 
for a and z. 
 
  a = der(v);  
  v = der(s); 
  z = der(w); 
 w = der(phi); 
 fz = MP*R*w^2; 
 
  R*z = sin(phi)*G - cos(phi)*a; 
-MS*a + sin(phi)*fz - cos(phi)*MP*R*z - MP*a =  0; 
 

If we substitute R*z by (sin(phi)*G - cos(phi)*a), we get: 
 
-MS*a + sin(phi)*fz - cos(phi)*MP* (sin(phi)*G - cos(phi)*a) - MP*a =  0; 
 
This equation only depends on state-variables or from variables that can be directly derived 
out of the stage (fz). It can be solved for a: 
 
  a = (sin(phi)*fz - cos(phi)*sin(phi)*MP*G) / (MS + MP*(1-cos(phi)^2)); 
 
z is now simply determined by backward substitution as: 
 
  z = (sin(phi)*G - cos(phi)*a)/R; 
 
 
 
 
 
 



We have transformed the equations into state-space form. Given the state-vector 
(s,v,phi,w), we can compute the derivatives by the following causal assignments: 
 
fz := MP*R*w*w; 
a := (sin(phi)*fz - cos(phi)*sin(phi)*MP*G) / (MS + MP*(1-cos(phi)*cos(phi))); 
z := (sin(phi)*G - cos(phi)*a)/R; 
der(v) := a; 
der(s) := v; 
der(w) := z; 
der(phi) := w; 

 
Applying the Forward Euler discretization scheme leads to the following Python code: 
 
#!/usr/bin/env python3 
# Author Dirk Zimmer (c) 2011 
 
from math import * 
 
#Setting the parameters 
MS = 250.0   #mass of the motocycle [kg] 
MP = 70.0  #mass of the swing [kg] 
R = 2.5  #Radius of the swing [m] 
G = -9.81 #Gravity acceleration 
 
phi0 = 1.25  #Initial elongation [rad] 
 
h = 0.001  #time-step of forward Euler integration [s] 
tStop = 5  #stop time [s] 
 
#Setting the initial values 
s = 0 
v = 0 
phi = phi0 
w = 0 
time = 0 
 
#open file for ouput 
fh = open("out.dat","w") 
 
#perform time-integration 
while time < tStop: 
 fz = MP*R*w*w; 
 a = (sin(phi)*fz-cos(phi)*sin(phi)*MP*G)/(MS+MP*(1-cos(phi)*cos(phi))); 
 z = (sin(phi)*G - cos(phi)*a)/R; 
  
 dv_dt = a 
 ds_dt = v 
 dw_dt = z 
 dphi_dt = w 
 
 v += h*dv_dt 
 s += h*ds_dt 
 w += h*dw_dt 
 phi += h*dphi_dt 
  
 time += h 
 print(time,"\t",v,"\t",w,file=fh) 
 
print("See out.dat for simulation result") 
 
fh.close() 

 
 
 
 
 


