Virtual Physics

18.11.2014

Exercise 5: Tearing Algebraic Loops within an electric circuit

Solution

Task A: Set up the model equations
We select the 6 currents and 5 voltage potentials as selected above. Additionally, we introduce uC as voltage across the capacitor. This yields 12 variables in total.

There are 3 node equations for the corrent:
$i 1=i 2+i 3$
$i 4+i 5=i 1$
$i 4+i 5+i 6=i 2+i 3$

The remaining 9 equations result from the components.
$i 3=10$
$\mathrm{vS}-\mathrm{vG}=\mathrm{i} 2 * \mathrm{R} 2$
$v R-v S=i 1 * R O$
$v C-v R=i 1 * R 3$
$\mathrm{vl}-\mathrm{vC}=\mathrm{uC}$
$\operatorname{der}(u C)^{*} C=i 1 ;$
$\operatorname{der}(\mathrm{i} 4)^{*} \mathrm{I}=\mathrm{vl}-\mathrm{vG}$
$\mathrm{vG}-\mathrm{vl}=\mathrm{R} 1 * \mathrm{i} 5$
vG = 0;

Task B: Identify suitable tearing variables
uC and i 4 are potential state variables and can assumed to be known.
Still only one two equations can be causalized:
i3 := 10;
vG := 0;

To continue, we select a tearing variable. i1 seems to be a good choice. It occurs in many equations and causalizes plenty of them.
i1 := iteration variable
i2 := i1 - i3;
vS := i2*R2 + vG
vR := i1*R0 + vS
$\mathrm{vC}:=\mathrm{i}$ * $\mathrm{R} 3+\mathrm{vR}$
vl := vC + uC;
i5 := i1 - i4;
residual := vG-vl-R1*i5
$\operatorname{der}(u C):=i 1 / C ;$
$\operatorname{der}(\mathrm{i} 4):=(\mathrm{vl}-\mathrm{vG}) / \mathrm{l}$
$i 6:=i 2+i 3-i 4-i 5$

Remark: the equations $\operatorname{der}(\mathrm{i} 4):=(\mathrm{vl}-\mathrm{vG}) / \mathrm{I}$ and $\operatorname{der}(\mathrm{uC}):=\mathrm{i} 1 / \mathrm{C}$ are not part of the algebraic loop since the are not required for the computation of the residual.

This is the corresponding BLT form of the system:

i3	vG	i2	vS	vR	vC	vl	i5	i1	$\begin{gathered} \text { duC/ } \\ d t \end{gathered}$	$\begin{gathered} \mathrm{di} 4 / \\ d t \end{gathered}$	i6
X											
	X										
X		X						X			
	X		X					X			
			X	X				X			
				X	X			X			
					X	X					
							X	X			
	X					X	X				
								X	X		
	X					X				X	
X		X					X				X

Residual equations may lead to empty elements on the diagonal.

