

Butcher tab	oleau			Robotics and Mechatronics Centre
Is Heun the only 2	nd order Method with two evalua	tions	of f()?	
Let us general	ize this procedure by introducing	coef	icients α a	nd β:
prediction:	$d\mathbf{x}_{k} = f(\mathbf{x}_{k}, t_{k})$ $\mathbf{x}^{p} = \mathbf{x}_{k} + h \cdot \beta_{11} d\mathbf{x}_{k}$			
correction:	$\begin{aligned} d \boldsymbol{x}^{P} &= f(\boldsymbol{x}^{P}, t_{k} + \boldsymbol{\alpha}_{1}\boldsymbol{h}) \\ \boldsymbol{x}_{k+1} &= \boldsymbol{x}_{k} + \boldsymbol{h} \cdot (\beta_{21} d \boldsymbol{x}_{k} + \beta_{22} d \boldsymbol{x}^{P}) \end{aligned}$			
The coefficient	ts are typically arranged in the Bu	tche	r tableau	
0 0	0	0	0 0	
α ₁ β ₁₁	0	1	1 0	
1 β ₂₁	β ₂₂	1	0.5 0.5	-
• On the right, y	ou see the Butcher tableau of He	un.		
			© Dirk Zir	nmer, December 2014, Slide

Higher-Ord	ler RK Methods	Robotics and Mechatronics Centre
Heun contains 2 can derive ev	sub-steps. If we allow <i>n</i> steps, we get more coefficent en higher-order methods:	cients and
step 0:	$d\mathbf{x}^{PO} = f(\mathbf{x}_k, t_k)$	
step i:	$\begin{split} & \dots \\ & \mathbf{x}^{p_{i}} = \mathbf{x}_{k} + h \cdot \left(\beta_{i_{1}} d\mathbf{x}^{p_{0}} + \beta_{i_{2}} d\mathbf{x}^{p_{1}} + \dots + \beta_{i_{i}} d\mathbf{x}^{p_{(i-1)}}\right) \\ & d\mathbf{x}^{p_{i}} = f(\mathbf{x}^{p_{i}}, t_{k} + \alpha, h) \end{split}$	
final step n:	$\mathbf{x}_{k+1} = \mathbf{x}_k + h \cdot (\beta_{n1} d\mathbf{x}^{p0} + \beta_{n2} d\mathbf{x}^{p1} + \dots + \beta_{nn} d\mathbf{x}^{p(n-1)}$)
	© Dirk Zi	mmer, December 2014, Slide 9

RK4: Illustration	Robotics and Mechatronics Centre
$dx^{p_2} x^{p_2} dx^{p_3} dx^{p_3} dx^{p_3} dx^{p_3} dx^{p_3} dx^{p_4} dx$	analytical solution
© Dirk Z	immer. December 2014. Slide

Various RK Methods							
Over time, many RK methods have been developed:							
	Developer	Year	Order	# of Stages			
	Euler	1768	1	1			
	Runge	1895	4	4			
	Heun	1900	2	2			
	Kutta	1901	5	6			
	Huta	1956	6	8			
	Shanks	1966	7	9			
	Curtis	1970	8	11			
 The r Alrea More In reo quite 	number of non-lin dy for RK metho e stages must be cent years, a sequ rapidly using con	near equations g ds of order 5, the added in order t uence of yet high mputer algebra r	rows rapidly with ere no longer exi o increase the nu ner-order RK met nethods (Maple,	h the order of th sts a solution in umber of parame hods were deve Mathematica).	e methods. 5 stages. eters. loped		

© Dirk Zimmer, December 2014, Slide 15

4

K: Stability	Robotics and Mechatre
What about the stability?	Stability Domains of FRK
 nth-order methods in n stages have the same stability domain. For orders higher than 5 the stability domain depends on the concrete Butcher tableau. 	lin(A. +b)
 Although, higher order methods gain a rather modestly. 	$\mathbb{R}e\{\lambda - n\}$ a lot in precision, the stability domain gr
 For stiff systems, all RK-methods are al use very small step-sizes. 	lmost as bad as FE. We are still bound to
 However, for oscillating systems (with situation improves significantly from R 	eigenvalues near the imaginary axis), th K2 on.

Local Integration Error Estimation Robotics and Mechatronics Centre					
In order to control the step-size, we would like to have an estimate of the local integration error for each step.					
 One way, is to perform the same step twice using two different integration methods. 					
- Using their results (x_1 and $x_2)$ we may estimate the relative error ϵ_{rel}					
$\boldsymbol{\varepsilon}_{rel} = \mathbf{x}_1 - \mathbf{x}_2 / \max(\mathbf{x}_1 , \mathbf{x}_2 , \delta) \qquad \delta \text{ is a small fudge value > 0}$					
- We can now compare $\epsilon_{\it rel}$ with the desired tolerance tol $_{\it rel}$ and control the stepsize accordingly					
© Dirk Zimmer, December 2014, Slide 19					

It is not ef	ficient to perfo	rm the same	e step twice. RK5 method	Hence, Fehlbe	erg manage	ed to
Here is	the Butcher T	ableau for R	unge-Kutte-I	Fehlberg 4/5:		
0	0	0	0	0	0	0
1/4	1/4	0	0	0	0	0
3/8	3/32	9/32	0	0	0	0
12/13	1932/2197	-7200/2197	7296/2197	0	0	0
1	439/216	-8	3680/513	-845/4104	0	0
1/2	-8/27	2	-3544/2565	1859/4104	-11/40	0
x ₁	25/216	0	1408/2565	2197/4104	-1/5	0
X ₂	16/135	0	6656/12825	28561/56430	-9/50	2/55

This is an *optimistic strategy* since steps are never repeated, even if the error is
 excessively large

© Dirk Zimmer, December 2014, Slide 2

 $0 = F(dp(\mathbf{x}_{k+1}, t_{k+1})/dt, \mathbf{x}_{k+1}, \mathbf{u}_{k+1}t_{k+1})$

These kind of solvers can also be applied on systems that have not undergone index-reduction (but it is not necessarily an efficient way to do so..)

© Dirk Zimmer, December 2014, Slide 2

 $\cancel{}$

DLR

Multi-Step: Startup

- Robotics and Mechatronics Centre
- There are some extra problems involved with multi-step methods in general
- One of them is the startup problem.
- We simply assumed, that there for an nth-order method, there are n-1 past values available. At start, this assumption is obviously violated.
- Essentially, there are two solutions:
 - Work yourself up: Start with BDF 1, then continue with BDF 2, BDF 3 and so on... Unfortunately, the usage of BDF 1 may enforce small step-sizes initially.
 - Kick-start using a single-step method of the appropriate order.
 For instance use 3 steps of RK4 to start BDF 4. However, since RK4 cannot cope with stiff systems, small step-sizes might again be enforced.
 - Most probably the best choice is to use and implicit Runge-Kutta (see later on) method as Kick-start

© Dirk Zimmer, December 2014, Slide 2

vervi	ew		T	Dotics and Mechatronics Centre
So far, w	ve have investig	ated two major class	es of integration me	thods
		Explicit	Implicit	_
	Single-Step	Runge-Kutta		
	Multi-Step		BDF (DASSL)	
1				

Overvi	ew		TUT Robotics a	+ DLR
So this	is what we ha	ve learned today:		
		Explicit	Implicit	
	Single-Step	Runge-Kutta	Implicit Runge-Kutta (Radau IIa)	
	Multi-Step	Adams-Bashforth	BDF (DASSL)	
			© Dirk Zimmer, Dece	mber 2014, Slide 38

