Virtual Physics
 Equation-Based Modeling

TUM, October 07, 2014

Equation-based modeling: first steps

```
equation
    sx0 = cos(frame_a.phi)*sx_norm + ..
    sy0 = -sin(frame_a.phi)*sx_norm + ..
    vy = der(frame_a.y);
    w_roll = der(flange_a.phi);
    v_long = vx*sx0 + vy*sy0;
    v_lat = -vx*sy0 + vy*sx0;
    v_slip_lat = v_lat - 0;
    v_slip_long = v_long - R*w_roll;
    v_slip = sqrt(v_slip_long^2 + ...
    -f_long*R = flange_a.tau;
    frame_a.t = 0;
    f = N*. S_Func(vAdhesion,vSlide,...
    f_long =f*v_slip_long/v_slip;
    f_lat =f*v_slip_lat/v_slip;
    f_long = frame_a.fx*sx0 +
    f_lat = -frame_a.fx*sy0 + ...
```


Dr. Dirk Zimmer
German Aerospace Center (DLR), Robotics and Mechatronics Centre

Modeling Example

- Let us start with a simple modeling example:

Let us brew beer! (or ferment wine.. for the non-ba(rb/v)arians)

- In this example, we are going to model the fermentation of sugar into alcohol and the corresponding growth and decay of yeast.
- In the process of fermentation each molecule of sugar is transformed into a molecule of alcohol (plus CO_{2})

$$
\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \rightarrow 2 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+2 \mathrm{CO}_{2}
$$

Variables and Parameters

- These are our model variables:
- Population of yeast: p
- Birth-Rate: b
- Death-Rate: d
- Concentration of sugar: s
- Concentration of alcohol: a
- Consumption of sugar: f
- Current Temperature: T
- Volume of vessel: $\mathrm{V}=1$
- Initial concentration of sugar: s0 $=0.2$
- Initial population of yeast: $\mathrm{p} 0=0.001$
- Feeding-Rate Coefficient: C_{f}
- Reproductivity: R
- Sensitivity to poison: S
- Reference Temperature: $T_{\text {ref }}$

Algebraic Equations

Let us start with the algebraic equations:

- The consumption of sugar (f) is proportional to concentration of sugar (s) multiplied by the population of yeast (p). The proportionality is determined by the feeding-rate $\left(\mathrm{C}_{f}\right)$ and the temperature (T)

$$
f=s \cdot p \cdot \mathrm{C}_{f} \cdot\left(T / \mathrm{T}_{\mathrm{ref}}\right)
$$

- Since each molecule of alcohol was transformed from one molecule of sugar at time $0(s 0)$, the current concentration of alcohol (a) is:

$$
a=s 0-s
$$

Algebraic Equations

Let us continue with the algebraic equations:

- The Birth-Rate is proportional to concentration of sugar (s). The proportionality is determined by the reproduction (R):

$$
b=\mathrm{R} \cdot \mathrm{~s}
$$

- The Death-Rate is dependent on the level of poisonous alcohol (a) and the sensitive (S) of the yeast.

$$
d=S \cdot a
$$

Algebraic Equations

The algebraic equations are:

$$
\begin{gathered}
f=s \cdot p \cdot \mathrm{C}_{f} \cdot\left(T / \mathrm{T}_{\mathrm{ref}}\right) \\
a=\mathrm{sO}-s \\
b=\mathrm{R} \cdot \mathrm{~s} \\
d=\mathrm{S} \cdot a
\end{gathered}
$$

T is determined from outside (input-variable)

Differential Equations

The differential equations describe the change over time:

- The change in population ($\mathrm{d} p / \mathrm{d} t$) equals the birth-rate (b) minus the death rate (d) and is proportional to the current population (p):

$$
\mathrm{d} p / \mathrm{d} t=p \cdot(b-d)
$$

- The change in concentration of sugar ($\mathrm{d} s / \mathrm{d} t$) multiplied by the Volume (V) equals the negative consumption rate (f) of sugar :

$$
\begin{gathered}
\mathrm{V} \cdot \mathrm{~d} s / \mathrm{d} t=-f \\
\text { or } \\
\mathrm{d} s / \mathrm{d} t=-f / \mathrm{V}
\end{gathered}
$$

Differential Equations

Robotics and Mechatronics Centre

The differential equations are:

$$
\mathrm{d} p / \mathrm{d} t=p \cdot(b-d)
$$

$$
\mathrm{d} s / \mathrm{d} t=-f / \mathrm{V}
$$

Differential Equations

Robotics and Mechatronics Centre

Let us plug in the algebraic equations:

$$
\mathrm{d} p / \mathrm{d} t=p \cdot(b-d)
$$

$$
\mathrm{d} s / \mathrm{d} t=-f / \mathrm{V}
$$

Differential Equations

Let us plug in the algebraic equations:

$$
\begin{gathered}
\mathrm{d} p / \mathrm{d} t=p \cdot(b-d) \\
\mathrm{d} p / \mathrm{d} t=p \cdot(\mathrm{R} \cdot \mathrm{~s}-\mathrm{S} \cdot a)
\end{gathered}
$$

$$
\mathrm{d} s / \mathrm{d} t=-f / \mathrm{V}
$$

Differential Equations

Let us plug in the algebraic equations:

$$
\begin{gathered}
\mathrm{d} p / \mathrm{d} t=p \cdot(b-\mathrm{d}) \\
\mathrm{d} p / \mathrm{d} t=p \cdot(\mathrm{R} \cdot \mathrm{~s}-\mathrm{S} \cdot a) \\
\mathrm{d} p / \mathrm{d} t=p \cdot(\mathrm{R} \cdot \mathrm{~s}-\mathrm{S} \cdot(\mathrm{~s} 0-\mathrm{s}))
\end{gathered}
$$

$$
\mathrm{d} s / \mathrm{d} t=-f / \mathrm{V}
$$

Differential Equations

Let us plug in the algebraic equations:

$$
\begin{gathered}
\mathrm{d} p / \mathrm{d} t=p \cdot(b-d) \\
\mathrm{d} p / \mathrm{d} t=p \cdot(\mathrm{R} \cdot \mathrm{~s}-\mathrm{S} \cdot a) \\
\mathrm{d} p / \mathrm{d} t=p \cdot(\mathrm{R} \cdot \mathrm{~s}-\mathrm{S} \cdot(\mathrm{sO}-\mathrm{s})) \\
d p / \mathrm{d} t=p \cdot((\mathrm{R}+\mathrm{S}) \cdot \mathrm{s}-\mathrm{S} \cdot \mathrm{~s} \mathrm{O})
\end{gathered}
$$

$$
\mathrm{d} s / \mathrm{d} t=-f / \mathrm{V}
$$

Differential Equations

Robotics and Mechatronics Centre

Let us plug in the algebraic equations:

$$
\begin{gathered}
\mathrm{d} p / \mathrm{d} t=p \cdot(b-d) \\
\mathrm{d} p / \mathrm{d} t=p \cdot(R \cdot \mathrm{~s}-\mathrm{S} \cdot a) \\
\mathrm{d} p / \mathrm{d} t=p \cdot(\mathrm{R} \cdot \mathrm{~s}-\mathrm{S} \cdot(\mathrm{~s} \mathrm{O}-\mathrm{s})) \\
\mathrm{d} p / \mathrm{d} t=p \cdot((\mathrm{R}+\mathrm{S}) \cdot \mathrm{s}-\mathrm{S} \cdot \mathrm{~s} \mathrm{O})
\end{gathered}
$$

$$
\begin{gathered}
\mathrm{d} s / \mathrm{d} t=-f / \mathrm{V} \\
\mathrm{~d} s / \mathrm{d} t=-\mathrm{s} \cdot p \cdot \mathrm{C}_{f} \cdot\left(T / \mathrm{T}_{\mathrm{ref}}\right) \cdot 1 / \mathrm{V}
\end{gathered}
$$

Differential Equations

Robotics and Mechatronics Centre

Let us plug in the algebraic equations:

$$
d p / d t=p \cdot((\mathrm{R}+\mathrm{S}) \cdot s-S \cdot \mathrm{SO})
$$

$$
\mathrm{d} s / \mathrm{d} t=-\mathrm{s} \cdot p \cdot \mathrm{C}_{f} \cdot\left(T / \mathrm{T}_{\mathrm{ref}}\right) \cdot 1 / \mathrm{V}
$$

Time Discretization

- Let us discretize the advance of time by the quantum h :
- Given x_{t}, we can compute x_{t+h} by using the Taylor-series expansion:

$$
\mathrm{x}_{t+h}=\mathrm{x}_{t}+(\mathrm{dx} / \mathrm{d} t)_{t} \cdot h+\left(\mathrm{dx} / \mathrm{d} t^{2}\right)_{t} \cdot\left(h^{2} / 2\right)+\left(\mathrm{dx} / \mathrm{dt}^{3}\right)_{t} \cdot\left(h^{3} / 6\right)+\ldots
$$

- Let us drop all higher derivatives. We get:

$$
\mathrm{x}_{t+h}=\mathrm{x}_{t}+(\mathrm{dx} / \mathrm{d} t)_{t} \cdot h
$$

- This discretization scheme is called: Forward Euler

Time Discretization

Let us apply Forward Euler to our differential equations:

$$
\begin{gathered}
p_{t+h}=p_{t}+(\mathrm{d} p / \mathrm{d} t)_{t} \cdot h \\
\text { with } \\
(\mathrm{d} p / \mathrm{d} t)_{t}=p_{t} \cdot\left((\mathrm{R}+\mathrm{S}) \cdot s_{t}-\mathrm{S} \cdot \mathrm{~s} 0\right) \\
s_{t+h}=s_{t}+(\mathrm{d} s / \mathrm{d} t)_{t} \cdot h \\
\text { with } \\
(\mathrm{d} s / \mathrm{d} t)_{t}=-s_{t} \cdot p_{t} \cdot \mathrm{C}_{f} \cdot\left(T_{t} / \mathrm{T}_{\text {ref }}\right) \cdot 1 / \mathrm{V}
\end{gathered}
$$

Simulation

- These four explicit equations are used to perform a simulation:

$$
\begin{aligned}
& p_{t+h}=p_{t}+(\mathrm{d} p / \mathrm{d} t)_{t} \cdot h \text { with }(\mathrm{d} p / \mathrm{d} t)_{t}=p_{t} \cdot\left((\mathrm{R}+\mathrm{S}) \cdot s_{t}-\mathrm{S} \cdot \mathrm{~s} 0\right) \\
& s_{t+h}=s_{t}+(\mathrm{d} s / \mathrm{d} t)_{t} \cdot h \text { with }(\mathrm{d} s / \mathrm{d} t)_{t}=-s_{t} \cdot p_{t} \cdot \mathrm{C}_{f} \cdot\left(T_{t} / \mathrm{T}_{\mathrm{ref}}\right) \cdot 1 / \mathrm{V}
\end{aligned}
$$

- We can simply punch them into a Phyton3 script:

```
while time < 10:
    dp_dt = p*((R+S)*s - S*s0)
    ds_dt = -s*p*C_f*(T/T_ref)*1/V
    p += h*dp_dt
    s += h*ds_dt
    a = s0-s
    time += h
    print(time,"\t",p,"\t",s,"\t",a)
```

- Here, there are computed within a loop. Each iteration represents one time-step: an advance of h in time.

Simulation Code

Robotics and Mechatronics Centre

This is the complete Phyton3-Script:

```
#!/usr/bin/env python3
#Setting the parameters
V = 1 #volume of fermentation vessel
s0 = 0.2 #inital concentration of sugar
p0 = 1e-6 #initial population of yeast [m3]
C_f = 50 #feeding Coefficient[1/day]
R = 10 #reproductivity[1/day]
S = 15 #sensitivity w.r.t. alcohol [1/day]
T_ref = 300 #reference temperature [K]
h = 0.01 #time-step of forward Euler integration
#Setting the initial values
p = p0
s = s0
a = s0 - s;
time = 0
```

\#Setting the input-value $\mathrm{T}=310$
\#perform time-integration
while time < 10:
dp_dt = p*((R+S)*s - S*s0)
ds_dt = -s*p*C_f*(T/T_ref)*1/V
p += h*dp_dt
s += h*ds_dt
a $=$ s0-s
time += h
print(time,"\t",p,"\t",s,"\t",a)

Simulation Results

- And this is the result for the yeast population:

Simulation Results

Robotics and Mechatronics Centre

- Concentration of sugar and alcohol:

Simulation Results

Interpretation of the simulation results:

- The population of yeast first grows exponentially. There seems to be an endless supply of sugar available.
- Then the population has reached a critical level and the concentration of sugar and alcohol are rapidly changing.
- Then, there is a sudden die-off due to the combination of starvation and self-poisoning.

State-Space Form

Let us look at the computational structure of our model. We can classify our variables into vectors of...

- Input Variables: $\mathbf{u}=(T)$
- State Variables: $\mathbf{x}=(p, s)$
- State Derivatives: $\mathrm{d} \mathbf{x} / \mathrm{d} t=(\mathrm{d} p / \mathrm{d} t, \mathrm{~d} s / \mathrm{d} t)$
- Output Variables: $\mathbf{y}=(a)$
- The system was then transformed into two functions:

$$
\begin{gathered}
\mathrm{d} \mathbf{x} / \mathrm{d} t=f(\mathbf{x}, \mathbf{u}, t) \\
\mathbf{y}=g(\mathbf{x}, \mathbf{u}, t)
\end{gathered}
$$

- This specific form is called: state-space form

State-Space Form

- We form a row vector out of \mathbf{x}, \mathbf{u}, and $t:(p, s, T, t)$
- We form a column vector out of $\mathrm{dx} / \mathrm{d} t$ and \mathbf{y} : ($\mathrm{d} p / \mathrm{dx}, \mathrm{d} s / \mathrm{dx}, a)$
- Now we can represent the dependences of our computational structure by a Boolean incidence matrix.

State-Space Form

- The incidence matrix can be decomposed into four blocks: A, B, C, D.
- If $g(\ldots)$ and $f(\ldots)$ represent linear functions (not the case here!), the system can indeed be expressed by real-valued matrices:

$$
\begin{gathered}
\mathrm{d} \mathbf{x} / \mathrm{d} t=\mathbf{A} \mathbf{x}+\mathbf{B}(\mathbf{u}, t) \\
\mathbf{y}=\mathbf{C} \mathbf{x}+\mathbf{D}(\mathbf{u}, t)
\end{gathered}
$$

Summary

Robotics and Mechatronics Centre

Let us summarize the development process of our simulation:

- First, we had to analyze our model and select the variables of interest.
- Then, we formulated a set of differential-algebraic equations (DAEs).
- Next, we had to transform this set of expressions into a computable/solvable form (state-space form).
- Finally, a time-discretization scheme was applied and a numerical integration could be performed (numerical ODEsolver).

Deficiencies

Even for this small and rather trivial example, this development process was rather laborious.

- Larger models cause much more work.
- Also there are more complicated models that are difficult to transform into state-space form.
- If we change the model, the complete process has to be redone.
- Programming a simulation manually turns out to be very inconvenient and is also very error-prone.
- For these reasons, a number of computer languages have been developed that aim to automate this process.
- Let us take a look back in history...

MIMIC (History)

- The language MIMIC was developed mainly for the Control Data super-computers in 1964.
- The listing presents the MIMIC code for the simulation of a swinging pendulum.
- Successors of these language were CSMP and ACSL. They prevailed up to the 80s.

	CON(G)	Declaration of constants
	PAR(1X0, X0)	Declaration of parameters
DT	0.05	Definition of time step
1 X INT (-G*Z, 1X0) Integration		
$\mathrm{X} \operatorname{INT}(1 \mathrm{X}, \mathrm{X} 0)$		
	1. $-\cos (\mathrm{X})$	Equation for y position
Z	$\operatorname{SIN}(\mathrm{X})$	Equation for z position
	$\operatorname{FIN}(\mathrm{T}, 4.9)$	Command for integration
	PLO(T, X, Y, Z) Commands for plotting	
	ZER(0., -5, 0., -1)	
	$\operatorname{SCA}(5 ., 5 ., 2.1$.	
	END End of program	

PAR(1X0, X0) Declaration of parameters
DT 0.05 Definition of time step

1X INT(-G*Z,1X0) Integration
$X \operatorname{INT}(1 X, X 0)$
Y 1.-COS $(X) \quad$ Equation for y position
$Z \operatorname{SIN}(X) \quad$ Equation for z position

FIN(T,4.9) Command for integration

PLO(T,X,Y,Z) Commands for plotting
ZER(0.,-5,0.,-1)
SCA(5.,5.,2.,1.)

END End of program

MIMIC

CDC 6600

- 40 MHz , roughly 1MFLOPS, 64K 60-bit words of memory
- Roughly 400 ' 000 transistors, over 100 miles of wiring
- A predecessor of the RISC-Architecture. Developed by Seymour Cray
- Prize: 7-10 Million \$ (and by that time, the dollar was worth something)

MIMIC (Advantages)

- The model could be formulated by assignments and integrators.
- These model "equations" could be arbitrarily ordered.
- The appropriate order for the state-space form is automatically derived.
- The time-discretization is not part of the model anymore. Different numerical ODE-solvers can be applied (better than FE)

	$\operatorname{CON}(\mathrm{G})$		
	PAR $(1 \mathrm{X} 0, \mathrm{X} 0)$	\quad	Declaration of constants
:---			
Declaration of parameters			
DT 0.05	\quad	Definition of time step	
:---	:---		

CON (G) Declaration of constants
PAR(1X0, X0) Declaration of parameters

1X INT(-G*Z,1X0) Integration
X INT(1X,X0)
Y 1.-COS(X) Equation for y position
Z SIN(X) Equation for z position

FIN(T,4.9) Command for integration

PLO(T,X,Y,Z) Commands for plotting
ZER(0.,-5,0.,-1)
SCA(5.,5.,2.,1.)

END End of program

MIMIC (Deficiencies)

- MIMIC could not handle real equations, only causal assignments.
- There were hardly any means to structure the program. The language was almost completely flat and there is only one global namespace.

	$\operatorname{CON}(\mathrm{G})$		
	PAR $(1 \mathrm{X} 0, \mathrm{X} 0)$	\quad	Declaration of constants
:---			
DT 0.05	\quad	Definition of time step	
:---	:---		

CON (G) Declaration of constants
PAR(1X0, X0) Declaration of parameters
DT 0.05 Definition of time step

1X INT(-G*Z,1X0) Integration
$X \operatorname{INT}(1 X, X 0)$
Y 1.-COS(X) Equation for y position
Z SIN(X) Equation for z position

FIN(T,4.9) Command for integration

PLO(T,X,Y, Z) Commands for plotting
ZER(0.,-5,0.,-1)
$\operatorname{SCA}(5 ., 5 ., 2.1$.)

END End of program

- The Dynamic Modeling Language was developed by Hilding Elmquist in 1978.
- The listing on the left displays the code of an assembled electric circuit and of its capacitor component.


```
model type capacitor
    cut A (Va / I) B (Vb / -I)
    main cut C [A B]
    main path P <A - B>
    local V
    parameter C
    V = Va -Vb
    C*}\operatorname{der}(V)=
end
model Network
    submodel ( resistor ) R1 R2
    submodel ( capacitor ) C
    submodel ( current ) F
    submodel Common
    input i
    output y
    connect Common to F to R1 to (C par R2)
        to Common
    E.I = i
    y = R2.Va
end
```


Dymola

- Dymola is a declarative language. It only contains code for the model-equations. The simulation is completely decoupled from the model description.
- This language enabled the formulation of hierarchic elements such as sub-components.
- These components could be automatically connected.

```
model type capacitor
    cut A (Va / I) B (Vb / -I)
    main cut C [A B]
    main path P <A - B>
    local V
    parameter C
    V = Va - Vb
    C*}\operatorname{der}(V)=
end
model Network
    submodel ( resistor ) R1 R2
    submodel ( capacitor ) C
    submodel ( current ) F
    submodel Common
    input i
    output y
    connect Common to F to R1 to (C par R2)
        to Common
    E.I = i
    y = R2.Va
end
```

- Dymola can handle non-causal equations such as $u=R^{*} i$

- In R1, the causality is: $\mathrm{u}:=\mathrm{R}^{*} \mathrm{i}$
- In R2, the causality is: $\mathrm{i}:=\mathrm{u} / \mathrm{R}$
- In Dymola, one can use the same, non-causal equations for both resistor components.

```
```

model type capacitor

```
```

model type capacitor
cut A (Va / I) B (Vb / -I)
cut A (Va / I) B (Vb / -I)
main cut C [A B]
main cut C [A B]
main path P <A - B>
main path P <A - B>
local V
local V
parameter C
parameter C
V = va -Vb
V = va -Vb
C*der(V) = I
C*der(V) = I
end
end
model Network
model Network
submodel (resistor) R1 R2
submodel (resistor) R1 R2
submodel (capacitor) C
submodel (capacitor) C
submodel (current) F
submodel (current) F
submodel Common
submodel Common
input i
input i
output y
output y
connect Common to F to R1 to (C par R2)
connect Common to F to R1 to (C par R2)
to Common
to Common
E.I = i
E.I = i
y = R2.Va
y = R2.Va
end

```
```

end

```
```


Omola

- Dymola never had any real impact in industry, it remained within academia.
- There, its main ideas were preserved and extended by Omola. This language enables a truly object-oriented modeling, featuring inheritance, wrapping etc.
- Modeling in Omola was also performed graphically. Only the fundamental equations are entered in textual form. All higherlevel model are assembled graphically.
- Also Omola remained within academia. Things started to change as Modelica was born in 1997.

Modelica

Robotics and Mechatronics Centre

Demonstration

Modelica

- As you see: Dymola is still alive, but not as modeling language but as an M\&S environment for Modelica.
- In Modelica, we can directly punch in our model equations.
- There is no need anymore to derive the state-space form by paper and pencil.

```
model Yeast
```

model Yeast
parameter Real V = 1 "volume of fermentation vessel";
parameter Real V = 1 "volume of fermentation vessel";
parameter Real sO=0.2 "initial concentration of sugar";
parameter Real sO=0.2 "initial concentration of sugar";
parameter Real p0 = 1e-6 "initial population of yeast";
parameter Real p0 = 1e-6 "initial population of yeast";
parameter Real C_f = 50 "Feeding Coefficient [1/day]";
parameter Real C_f = 50 "Feeding Coefficient [1/day]";
parameter Real R = 10 "Reproductivity [1/day]";
parameter Real R = 10 "Reproductivity [1/day]";
parameter Real S = 15 "Sensitivity w.r.t. alcohol [1/day]";
parameter Real S = 15 "Sensitivity w.r.t. alcohol [1/day]";
parameter Real T_ref = 300 "reference temperature";
parameter Real T_ref = 300 "reference temperature";
Real p "population of yeast";
Real p "population of yeast";
Real b "birth rate";
Real b "birth rate";
Real d "death rate";
Real d "death rate";
Real s "concentration of sugar";
Real s "concentration of sugar";
Real a "concentration of alcohol";
Real a "concentration of alcohol";
Real f "consumption of sugar (feeding)";
Real f "consumption of sugar (feeding)";
Real T "current temperature";
Real T "current temperature";
initial equation
initial equation
p = p0;
p = p0;
s = sO;
s = sO;
equation
equation
f=s * p * C_f * (T/T_ref);
f=s * p * C_f * (T/T_ref);
a = sO-s;
a = sO-s;
b = R * s;
b = R * s;
d= S* a;
d= S* a;
T = 310;
T = 310;
der(p) = p*(b-d);
der(p) = p*(b-d);
V*der(s) = -f;
V*der(s) = -f;
end Yeast;

```
end Yeast;
```


Modeling and Simulation

- In the field of programming languages, there are highlevel languages (Phyton, C++) and low-level languages (Assembler)
- The same is true for modeling languages.
- The state-space form is a common target of their compilation scheme (the Assembler language of a modeler).

Modeling and Simulation

Robotics and Mechatronics Centre

- The first (and larger) part of the lecture concerns the modeling side.
- You will learn to model in Modelica using the software Dymola.

Modeling and Simulation

Robotics and Mechatronics Centre

The way up:

- To this end, we have to learn how to formulate the laws of physics in an object-oriented way.

Modeling and Simulation

The way up:

- To this end, we have to learn how to formulate the laws of physics in an object-oriented way.
- This is a sole matter of physics. It has nothing to do with computer science.

Modeling and Simulation

Robotics and Mechatronics Centre

The way down:

- Then we have to learn how the languages are compiled, and how the state-space form is automatically derived.

Modeling and Simulation

The way down:

- Then we have to learn how the languages are compiled, and how the state-space form is automatically derived.
- This is a sole matter of computer science. It has nothing to do with physics.

Modeling and Simulation

The way down: \square

- Then we have to learn how the languages are compiled, and how the state-space form is automatically derived.
- This is a sole matter of computer science. It has nothing to do with physics.
- (And by the way, we are going to model a lot of cool systems...)

Modeling and Simulation

- The second (and smaller) part of this lecture series concerns simulation.
- You will learn different techniques how to implement numerical ODE solvers, and how they influence the simulation result.
- In addition, the handling of events will be discussed.

Modeling and Simulation

Questions?

