

Differential Equations	Robotics and Mechatronics Centre
Let us plug in the algebraic equations:	
$dp/dt = p \cdot (b-d)$	
ds/dt = -f/V	
	© Dirk Zimmer, October 2014, Slide 9

Differential Equations	Robotics and Mechatronics Centre
Let us plug in the algebraic equations:	
$dp/dt = p \cdot (b-d)$	
$dp/dt = p \cdot (R \cdot s - S \cdot a)$	
$dp/dt = p \cdot (R \cdot s - S \cdot (s0 - s))$	
$\frac{dp}{dt} = p \cdot ((R+S) \cdot s - S \cdot s0)$	
ds/dt = -f/V	
$\frac{ds/dt = -s \cdot p \cdot C_{\underline{f}} \cdot (T/T_{\underline{ref}}) \cdot 1/V}{1}$	
© D	irk Zimmer. October 2014. Slide 13

Cime Discretization • Let us discretize the advance of time by the quantum h: • Given x_t , we can compute x_{t+h} by using the Taylor-series expansion: $x_{t+h} = x_t + (dx/dt)_t \cdot h + (dx/dt^2)_t \cdot (h^2/2) + (dx/dt^3)_t \cdot (h^3/6) + ...$ • Let us drop all higher derivatives. We get: $x_{t+h} = x_t + (dx/dt)_t \cdot h$ • This discretization scheme is called: Forward Euler

Summary

© Dirk Zimmer, October 2014, Slide 2

DLR

MIMIC (History)	Robotics and Mechatronics Centre
 The language MIMIC was developed mainly for the Control Data super-computers in 1964. 	CON(G) Declaration of constants PAR(1X0,X0) Declaration of parameters DT 0.05 Definition of time step 1X INT(-G*Z,1X0) Integration X INT(1X, X0)
• The listing presents the MIMIC code for the simulation of a swinging pendulum.	X INI(IX,X0) Y 1COS(X) Equation for y position Z SIN(X) Equation for z position FIN(T,4.9) Command for integration
 Successors of these language were CSMP and ACSL. They prevailed up to the 80s. 	<pre>PLO(T,X,Y,Z) Commands for plotting ZER(0.,-5,0.,-1) SCA(5.,5.,2.,1.) END End of program</pre>
	© Dirk Zimmer, October 2014, Slide 27

MIMIC (Advantages)	Robotics and Mechatronics Centre
• The model could be formulated by assignments and integrators.	CON(G)Declaration of constantsPAR(1X0,X0)Declaration of parametersDT0.05Definition of time step
These model "equations" could be arbitrarily ordered.	1X INT(-G*Z,1X0) Integration X INT(1X,X0) Y 1COS(X) Equation for y position
 The appropriate order for the state-space form is automatically derived. 	Z SIN(X) Equation for 2 position FIN(T, 4.9) Command for integration
 The time-discretization is not part of the model anymore. Different numerical ODE-solvers can be applied (better than FE) 	PLO(T,X,Y,Z) Commands for plotting ZER(0.,-5,0.,-1) SCA(5.,5.,2.,1.) END End of program
	© Dirk Zimmer, October 2014, Slide 29

MIMIC (Deficiencies)	Robotics and Mechatronics Centre
 MIMIC could not handle real equations, only causal assignments. 	CON(G) Declaration of constants PAR(1X0,X0) Declaration of parameters DT 0.05 Definition of time step
 There were hardly any means to structure the program. The language was almost completely flat and there is only one global namespace. 	<pre>1X INT(-G*Z,1X0) Integration X INT(1X,X0) Y 1COS(X) Equation for y position Z SIN(X) Equation for z position FIN(T,4.9) Command for integration PLO(T,X,Y,Z) Commands for plotting ZER(0.,-5,0.,-1)</pre>
	SCA (5 . , 5 . , 2 . , 1 .) END End of program © Dirk Zimmer, October 2014, Slide 30

Dymola	Robotics and Mechatronics Centre
 Dymola is a declarative language. It only contains code for the model-equations. The simulation is completely decoupled from the model description. 	<pre>model type capacitor cut A (Va / I) B (Vb / -I) main cut C [A B] main path P <a -="" b=""> local V parameter C V = Va -Vb C*der(V) = I end</pre>
 This language enabled the formulation of hierarchic elements such as sub-components. 	<pre>model Network submodel (resistor) R1 R2 submodel (capacitor) C submodel (current) F submodel Common</pre>
 These components could be automatically connected. 	<pre>input i output y connect Common to F to R1 to (C par R2) to Common E.I = i y = R2.Va end</pre>

