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• One of the first programming languages that was designed for the main 
purpose of general computer simulation was Simula 67.  
 

• It was designed in the 1960s, and it is also known to be the first object-
oriented language in programming language history.  
 

• Whereas many concepts and design ideas of Simula have been quickly 
adopted by many mainstream programming languages like C++, JAVA, or 
Eiffel, the development of equation-based object-oriented modeling 
languages took unfortunately much longer. 
 

• In spite of common origins, this led partly to a dissociation of the 
corresponding object-oriented terminologies. Object-orientation in 
programming languages is thus partly distinct from its representation in 
the equation-based counterparts. 

Object-Oriented Languages 
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• The history of equation-based modeling begins way before the invention 
of the first programming language.  

 

• Although the term object orientation is a recent invention of computer 
science, its major concept can be traced back through centuries.  

 

• The idea to compose a formal description of a system from its underlying 
objects is much older than computer science. 

 

• So today is going to be a strange lecture in physics. We take a fresh look 
at the formulation of physical laws. 

Object-Orientation in Physics 
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• It is a prerequisite for any object-oriented modeling approach that the 
behavior of the total system can be derived from the behavior of its 
components. 
 

• A first manifestation of this problem can be found in the description of 
mechanical systems with rigidly connected bodies. 

 

 “Given is a system of multiple bodies that are arbitrarily  
[rigidly] connected with each other. We suppose that each  

body exhibits a natural movement that it cannot follow due to  
the rigid connections with the other bodies. We search the  

movement that is imposed to all bodies.” 
 Jean-Baptiste le Rond d'Alembert, 1758 

 

 

 

D’Alembert’s Principle 
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• The method that leads to the 
solution of the problem is known 
today as d'Alembert's principle.  
 

• His contribution is based, upon 
others, on the work of Jakob I. and 
Daniel Bernoulli and Leonhard Euler.  
 

• It was brought to its final form by 
Joseph-Louis de Lagrange and is 
often presented today by the 
following equation: 

  Σf - ma = 0 

 

 

 

D’Alembert’s Principle 

Jean-Baptiste le Rond d’Alembert 
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• The method that leads to the 
solution of the problem is known 
today as d'Alembert's principle.  
 

• His contribution is based, upon 
others, on the work of Jakob I. and 
Daniel Bernoulli and Leonhard Euler.  
 

• It was brought to its final form by 
Joseph-Louis de Lagrange and is 
often presented today by the 
following equation: 

  Σf - ma = 0 

 

 

 

D’Alembert’s Principle 

Jakob I. Bernoulli 
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• The method that leads to the 
solution of the problem is known 
today as d'Alembert's principle.  
 

• His contribution is based, upon 
others, on the work of Jakob I. and 
Daniel Bernoulli and Leonhard Euler.  
 

• It was brought to its final form by 
Joseph-Louis de Lagrange and is 
often presented today by the 
following equation: 

  Σf - ma = 0 

 

 

 

D’Alembert’s Principle 

Daniel Bernoulli 
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• The method that leads to the 
solution of the problem is known 
today as d'Alembert's principle.  
 

• His contribution is based, upon 
others, on the work of Jakob I. and 
Daniel Bernoulli and Leonhard Euler.  
 

• It was brought to its final form by 
Joseph-Louis de Lagrange and is 
often presented today by the 
following equation: 

  Σf - ma = 0 

 

 

 

D’Alembert’s Principle 

Leonhard Euler 
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• The method that leads to the 
solution of the problem is known 
today as d'Alembert's principle.  
 

• His contribution is based, upon 
others, on the work of Jakob I. and 
Daniel Bernoulli and Leonhard Euler.  
 

• It was brought to its final form by 
Joseph-Louis de Lagrange and is 
often presented today by the 
following equation: 

 Σf - ma = 0 

 

 

 

D’Alembert’s Principle 

Joseph-Louis de Lagrange 
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+ D’Alembert’s Principle 

1691 1811 

• It took 120 years and the brainpower of the greatest mathematicians to 
bring d’Alembert’s Principle into its final form! 

 

• 120 years for this equation: Σf - ma = 0 ??? 
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• Unjustifiably, the presentation of 
 

Σf - ma = 0 
 

 reduces a major mechanical principle to a trivial equation.  
 

• Often it is mistakenly “derived” by transforming Newton´s law f = ma, 
but Newton’s law holds just for a single point of mass.  
 

• D´Alembert’s principle applies to complete mechanic systems. Its central 
idea is to take the imposed movement as counteracting force.  
 

• D’Alembert’s principle is best understood by applying it to an example… 

D’Alembert: The classic way 
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• Let us model this asymmetric  
seesaw. l1 and l2 denote the  
lengths of the opposing lever 
arms. 

 

• We start by the equations for 
the lever arm. 

 

• Relation of velocity (in direction of en, normal to the lever arm):  

v1∙l2  =  -v2 ∙ l1 

• Balance of force:  

fn,1∙l1  +  fn,2 ∙ l2  =  0 

 

D’Alembert: The classic way 
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• Each body element defines 
one differential equation  
since the acceleration is  
the time-derivative of the  
velocity. 

 
 

 

• Left Body: 

dv1/dt  =  a1 

 

• Right Body: 

dv2/dt  =  a2 

D’Alembert: The classic way 
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• D’Alembert’s Principle can 
now be directly applied on  
the body components. 

 

• The sum of all forces has to  
be in equilibrium with the  
imposed movement 

 

• Left Body: 

 fn,1en + fz,1ez + (0, -m1g)T – m1a1en = 0 
 

• Right Body: 

 fn,2en + fz,2ez + (0, -m2g)T – m2a2en = 0 
 

D’Alembert: The classic way 
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• D’Alembert’s Principle can 
now be directly applied on  
the body components. 

 

• The sum of all forces has to  
be in equilibrium with the  
imposed movement 

 

• Left Body: 

 fn,1en + fz,1ez + (0, -m1g)T – m1a1en = 0 
 

• Right Body: 

 fn,2en + fz,2ez + (0, -m2g)T – m2a2en = 0 
 

D’Alembert: The classic way 

Forces of lever arm 

Gravity Force 

Imposed movement 
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• In total, we have 8 unknowns: a1,a2, v1, v2, fn,1, fn,2 fz,1, fz,2 

• And 8 (4 + 2∙2) scalar differential-algebraic equations: 

 

v1∙l2  =  -v2 ∙ l1 

fn,1∙l1  +  fn,2∙l2  =  0 

dv1/dt  =  a1 

dv2/dt  =  a2 

 fn,1en + fz,1ez + (0, -m1g)T – m1a1en = 0 (2 scalar equations) 

 fn,2en + fz,2ez + (0, -m2g)T – m2a2en = 0 (2 scalar equations) 

 

• So the system is complete and regular. Mission accomplished. 
 

D’Alembert: The classic way 
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There is a different perspective on D´Alembert´s Principle 

 

 

 

 

 

 

 

• Let us look at a mechanical node (or flange, if you prefer) that rigidly 
connects different mechanical components. 

• Each component defines its own velocity v1, v2, …, vn  
and its own force f1, f2, …, fn. 

 

D’Alembert: The node equations 

mass

m=m

rod

L=L

sp
rin

g

v1 

v2 

v3 

f1 f3 

f2 
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No we can state the following equations for this node: 

 

 

 

 

 

 

• Since the connection is rigid, all velocities must be equal:  

 v1 = v2 = … = vn  

• And d’Alembert’s principle is telling us that there is a balance of force: 

  f1 + f2 + … + fn = 0 

D’Alembert: The node equations 

mass

m=m

rod

L=L

sp
rin

g

v1 

v2 

v3 

f1 f3 

f2 
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• If we do so, the body equations are represented by: 

 dv/dt = a 

  f = ma 

D’Alembert: The node equations 

mass

m=m

rod

L=L

sp
rin

g

v1 
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v3 

f1 f3 

f2 
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When we add another component to the node…. 

 

 

 

 

 

 

 

 

• …only the equations of the node change, but the equations of the 
individual components remain untouched. 

 

D’Alembert: The node equations 

mass

m=m
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• D'Alembert's principle is not an actual physical law. It represents a 
methodology to obtain a correct set of differential-algebraic equations 
for arbitrary mechanical systems.  
 
 

• D'Alembert's principle reveals itself to be simple and elegant for this 
purpose, but it is by no means a triviality.  
 

 

 

D`Alembert`s Principle: Summary 



© Dirk Zimmer, October 2014, Slide 22 

Robotics and Mechatronics Centre 

+ 

• Whereas D'Alembert's principle 
provides a method to derive a 
correct set of equations for rigidly 
constrained mechanical 
components, Gustav Kirchhoff 
accomplished a similar task for the 
electrical domain.  
 

• In 1845, he stated his two famous 
circuit laws. 
 
 
 

 

Kirchhoff`s Circuit Laws 

Gustav Robert Kirchhoff  
1824 - 1887 
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• The first circuit law states that for 
each electrical node, the sum of the 
incoming currents must equal the 
sum of the outgoing currents. 
 

  Σ iin = Σ iout 

 
 
• Unfortunately, it not always clear in 

what direction the current is 
flowing. 
 
 
 
 

 

The 1st Circuit Law 

R=R R2 

R=R R3 
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• Fortunately, we can transform this 
law into a more convenient form, 
by defining the flow direction and 
allowing negative currents. 
 

• If we define that the current always 
flows from the node into the 
components, we can state: 
 

  Σ in = 0 

 
 

 

The 1st Circuit Law 

R=R R2 

R=R R3 
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• The second circuit law is the mesh 
(or loop) rule. 
 

• It states that the directed sum of 
the electrical voltages around any 
closed circuit must be zero.  
 

  Σ un = 0 

 
 
• This form is rather inconvenient 

since it requires to decompose the 
electric circuit into its loops.  

 

The 2nd Circuit Law 

u1 

u2 

u3 R=R R2 
R=R R3 

u4 
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• Also this rule can be transformed 
into a more convenient form. 
 

• To this end, we ground the circuit. 
 

• Now, we can assign an electric 
potential v (Spannungspotential) to 
each node . 
 

• Kirchhoff’s mesh rule is now 
equivalent to the node equation 
 

 v1 = v2 = … = vn 
 

• The voltage potentials at each node 
must be equal. 

 
 

The 2nd Circuit Law 

R=R R2 
R=R R3 

ground 

va1 

va2 

va3 

vb2 

vb3 

vb1 



© Dirk Zimmer, October 2014, Slide 27 

Robotics and Mechatronics Centre 

+ 

Let us model a simple electric circuit: 

 

 

 

 

 

 

 
 
 

Kirchhoff’s Laws in Action 

R=150

R

G

C
=0.001

C

S=10

+
-
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Let us model a simple electric circuit: 

 

 

 

 

 

 

 
 
 

Kirchhoff’s Laws in Action 

R=150

R

G

C
=0.001

C

S=10

+
-

vS1 

vG iG 

iR1 
vS2 

vR1 vR2 

vC1 

vC2 

iR2 
iC1 

iC2 iS1 

iS2 
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First we start with the component equations 

 

• The grounding is easy 
 (2 unknowns, 1 equation): 

VG = 0 

 

 

• The voltage source connects two nodes: 
(4 unknowns, 2 equations) 

iS1 + iS2 = 0 

vS1 + 10V = vS2 

 

 

Kirchhoff’s Laws in Action 

+ - vS1 vS2 

iS1 iS2 
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First we start with the component equations 

 

• The resistor is modeled by famous 
Ohm´s law: (5 unknowns, 3 equations) 

 

uR = R*iR1 

with 

 

iR1 + iR2 = 0 

vR1 + uR = vR2 

 

 

Kirchhoff`s Laws in Action 

iR1 

vR1 

vR2 

iR2 
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First we start with the component equations 

 

• The capacitor contains a differential 
equation. The voltage is induced by a 
charge. The derivative of the charge is 
the current. (5 unknowns, 3 equations) 

 
C*duC/dt = iC1 

with 

iC1 + iC2 = 0 

vC1 + uC = vC2 

 

 

Kirchhoff`s Laws in Action 

vC1 vC2 

iC1 iC2 
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Then we continue by applying 
Kirchhoff’s law for each node: 

 

 vS2 = vR1 
iS2 + iR1 = 0 

 

 vR2 = vC1 
iR2 + iC1 = 0 

 

 vC2 = vG 
vS1 = vG 

iC2 + iS1 + iG = 0 

 

Kirchhoff`s Laws in Action 

R=150

R

G

C
=0.001

C

S=10

+
-

vS1 

vG iG 

iR1 
vS2 

vR1 vR2 

vC1 

vC2 

iR2 
iC1 

iC2 iS1 

iS2 
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Then we continue by applying 
Kirchhoff’s law for each node: 

 

 vS2 = vR1 
iS2 + iR1 = 0 

 

 vR2 = vC1 
iR2 + iC1 = 0 

 

 vC2 = vG 
vS1 = vG 

iC2 + iS1 + iG = 0 

 

Kirchhoff`s Laws in Action 

R=150

R

G

C
=0.001

C

S=10

+
-

vS1 

vG iG 

iR1 
vS2 

vR1 vR2 

vC1 

vC2 

iR2 
iC1 

iC2 iS1 

iS2 
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 vS2 = vR1 
iS2 + iS1 = 0 

 vR2 = vC1 
iR2 + iC1 = 0 

 vC2 = vG 
vS1 = vG 

iC2 + iS1 + iG = 0 

 

Node equations 

 

Kirchhoff`s Laws in Action 

 
 
 

 vG = 0 

 iS1 + iS2 = 0 
 vS1 + 10V = vS2 

 uR = R*iR1 
IR1 + IR2 = 0 

vR1 + uR = vR2 

C*duC/dt = iC1 
IC1 + IC2 = 0 

vC1 + uC = vC2 

Component Equations 

 

When we collect all equations, we count 16 equations and 16 unknowns.  
The system of differential-algebraic equations is complete. 
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+ Object-Orientation 

In this way, Kirchhoff enabled the object-oriented modeling of electric 
systems. 

• By having general laws for the junctions between components, the 
equations of the individual components become generally applicable 
and reusable. 

• Kirchhoff's laws prove that the junction structure of an electrical circuit 
provides a general interface for all potential electric components. The 
implementation of a component (its internal equations) can therefore be 
separated from the interface (its nodes). 

• The interface of a component describes how the components can be 
applied, whereas the implementation describes what is its internal 
functionality. Components with equivalent interface can be generically 
interchanged. 

• Known circuits can be extended by adding further junctions and 
components. Knowledge can be inherited.  
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+ Object-Orientation 

• The highlighted terms represent keywords or motivations common to 
object-oriented programming. 

• Next week, we are going to see how the modeling perspective of object-
orientation is realized within a computer language. 



Questions? 
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