Virtual Physics
 Equation-Based Modeling

TUM, October 14, 2014

Object-oriented formulation of physical systems - Part I

Dr. Dirk Zimmer

Object-Oriented Languages

- One of the first programming languages that was designed for the main purpose of general computer simulation was Simula 67.
- It was designed in the 1960 s, and it is also known to be the first objectoriented language in programming language history.
- Whereas many concepts and design ideas of Simula have been quickly adopted by many mainstream programming languages like C++, JAVA, or Eiffel, the development of equation-based object-oriented modeling languages took unfortunately much longer.
- In spite of common origins, this led partly to a dissociation of the corresponding object-oriented terminologies. Object-orientation in programming languages is thus partly distinct from its representation in the equation-based counterparts.

Object-Orientation in Physics

- The history of equation-based modeling begins way before the invention of the first programming language.
- Although the term object orientation is a recent invention of computer science, its major concept can be traced back through centuries.
- The idea to compose a formal description of a system from its underlying objects is much older than computer science.
- So today is going to be a strange lecture in physics. We take a fresh look at the formulation of physical laws.

D'Alembert's Principle

- It is a prerequisite for any object-oriented modeling approach that the behavior of the total system can be derived from the behavior of its components.
- A first manifestation of this problem can be found in the description of mechanical systems with rigidly connected bodies.
"Given is a system of multiple bodies that are arbitrarily [rigidly] connected with each other. We suppose that each body exhibits a natural movement that it cannot follow due to the rigid connections with the other bodies. We search the movement that is imposed to all bodies."

Jean-Baptiste le Rond d'Alembert, 1758

D'Alembert's Principle

- The method that leads to the solution of the problem is known today as d'Alembert's principle.
- His contribution is based, upon others, on the work of Jakob I. and Daniel Bernoulli and Leonhard Euler.
- It was brought to its final form by Joseph-Louis de Lagrange and is often presented today by the following equation:

$$
\Sigma \mathbf{f}-m \mathbf{a}=0
$$

Jean-Baptiste le Rond d'Alembert

D'Alembert's Principle

- The method that leads to the solution of the problem is known today as d'Alembert's principle.
- His contribution is based, upon others, on the work of Jakob I. and Daniel Bernoulli and Leonhard Euler.
- It was brought to its final form by Joseph-Louis de Lagrange and is often presented today by the following equation:

Jakob I. Bernoulli

D'Alembert's Principle

- The method that leads to the solution of the problem is known today as d'Alembert's principle.
- His contribution is based, upon others, on the work of Jakob I. and Daniel Bernoulli and Leonhard Euler.
- It was brought to its final form by Joseph-Louis de Lagrange and is often presented today by the following equation:

$$
\Sigma \mathbf{f}-m \mathbf{a}=0
$$

Daniel Bernoulli

D'Alembert's Principle

- The method that leads to the solution of the problem is known today as d'Alembert's principle.
- His contribution is based, upon others, on the work of Jakob I. and Daniel Bernoulli and Leonhard Euler.
- It was brought to its final form by Joseph-Louis de Lagrange and is often presented today by the following equation:

$$
\Sigma \mathbf{f}-m \mathbf{a}=0
$$

Leonhard Euler

D'Alembert's Principle

- The method that leads to the solution of the problem is known today as d'Alembert's principle.
- His contribution is based, upon others, on the work of Jakob I. and Daniel Bernoulli and Leonhard Euler.
- It was brought to its final form by Joseph-Louis de Lagrange and is often presented today by the following equation:

$$
\Sigma \mathbf{f}-m \mathbf{a}=0
$$

Joseph-Louis de Lagrange

D'Alembert's Principle

1691 1811

- It took 120 years and the brainpower of the greatest mathematicians to bring d'Alembert's Principle into its final form!
- 120 years for this equation: $\Sigma \mathbf{f}-\mathrm{ma}=0$???

D'Alembert: The classic way

- Unjustifiably, the presentation of

$$
\Sigma f-m a=0
$$

reduces a major mechanical principle to a trivial equation.

- Often it is mistakenly "derived" by transforming Newton's law $\mathbf{f}=m a$, but Newton's law holds just for a single point of mass.
- D'Alembert's principle applies to complete mechanic systems. Its central idea is to take the imposed movement as counteracting force.
- D'Alembert's principle is best understood by applying it to an example...

D'Alembert: The classic way

Robotics and Mechatronics Centre

- Let us model this asymmetric seesaw. I_{1} and I_{2} denote the lengths of the opposing lever arms.

- Relation of velocity (in direction of \mathbf{e}_{n}, normal to the lever arm):

$$
v_{1} \cdot I_{2}=-v_{2} \cdot I_{1}
$$

- Balance of force:

$$
f_{\mathrm{n}, 1} \cdot l_{1}+f_{\mathrm{n}, 2} \cdot I_{2}=0
$$

D'Alembert: The classic way

Robotics and Mechatronics Centre

- Each body element defines one differential equation since the acceleration is the time-derivative of the velocity.

- Left Body:

$$
\mathrm{d} v_{1} / \mathrm{d} t=a_{1}
$$

- Right Body:

$$
\mathrm{d} v_{2} / \mathrm{d} t=a_{2}
$$

D'Alembert: The classic way

Robotics and Mechatronics Centre

- D'Alembert's Principle can now be directly applied on the body components.
- The sum of all forces has to be in equilibrium with the imposed movement

- Left Body:

$$
f_{\mathrm{n}, 1} \mathbf{e}_{\mathrm{n}}+f_{z, 1} \mathbf{e}_{\mathrm{z}}+\left(0,-\mathrm{m}_{1} \mathrm{~g}\right)^{\top}-m_{1} a_{1} \mathbf{e}_{\mathrm{n}}=\mathbf{0}
$$

- Right Body:

$$
f_{\mathrm{n}, 2} \mathbf{e}_{\mathrm{n}}+f_{\mathrm{z}, 2} \mathbf{e}_{\mathrm{z}}+\left(0,-\mathrm{m}_{2} \mathrm{~g}\right)^{\top}-m_{2} a_{2} \mathbf{e}_{\mathrm{n}}=\mathbf{0}
$$

D'Alembert: The classic way

Robotics and Mechatronics Centre

- D'Alembert's Principle can now be directly applied on the body components.
- The sum of all forces has to be in equilibrium with the imposed movement

- Left Body:

$$
f_{\mathrm{n}, 1} \mathbf{e}_{\mathrm{n}}+f_{\mathrm{z}, 1} \mathbf{e}_{\mathrm{z}}+\left(0,-\mathrm{m}_{1} g\right)^{\top}-m_{1} a_{1} \mathbf{e}_{\mathrm{n}}=\mathbf{0}
$$

- Right Body:

$$
f_{\mathrm{n}, 2} \mathbf{e}_{\mathrm{n}}+f_{\mathrm{z}, 2} \mathbf{e}_{\mathrm{z}}+\left(0,-\mathrm{m}_{2} g\right)^{\top}-m_{2} a_{2} \mathbf{e}_{\mathrm{n}}=\mathbf{0}
$$

D'Alembert: The classic way

- In total, we have 8 unknowns: $a_{1}, a_{2}, v_{1}, v_{2}, f_{n, 1}, f_{n, 2} f_{2,1} f_{2,2}$
- And $8(4+2 \cdot 2)$ scalar differential-algebraic equations:

$$
\begin{gathered}
v_{1} \cdot I_{2}=-v_{2} \cdot I_{1} \\
f_{\mathrm{n}, 1} \cdot l_{1}+f_{\mathrm{n}, 2} \cdot I_{2}=0 \\
\mathrm{~d} v_{1} / \mathrm{d} t=a_{1} \\
\mathrm{~d} v_{2} / \mathrm{d} t=a_{2} \\
f_{\mathrm{n}, 1} \mathbf{e}_{\mathrm{n}}+f_{z, 1} \mathbf{e}_{\mathrm{z}}+\left(0,-\mathrm{m}_{1} \mathrm{~g}\right)^{\top}-m_{1} a_{1} \mathbf{e}_{\mathrm{n}}=\mathbf{0} \text { (2 scalar equations) } \\
f_{\mathrm{n}, 2} \mathbf{e}_{\mathrm{n}}+f_{2,2} \mathbf{e}_{\mathrm{z}}+\left(0,-\mathrm{m}_{2} \mathrm{~g}\right)^{\top}-m_{2} a_{2} \mathbf{e}_{\mathrm{n}}=\mathbf{0} \text { (2 scalar equations) }
\end{gathered}
$$

- So the system is complete and regular. Mission accomplished.

D'Alembert: The node equations

There is a different perspective on D'Alembert's Principle

- Let us look at a mechanical node (or flange, if you prefer) that rigidly connects different mechanical components.
- Each component defines its own velocity $v_{1}, v_{2}, \ldots, v_{n}$ and its own force $f_{1}, f_{2}, \ldots, f_{n}$.

D'Alembert: The node equations

No we can state the following equations for this node:

- Since the connection is rigid, all velocities must be equal:

$$
v_{1}=v_{2}=\ldots=v_{n}
$$

- And d'Alembert's principle is telling us that there is a balance of force:

$$
f_{1}+f_{2}+\ldots+f_{n}=0
$$

D'Alembert: The node equations

- If we do so, the body equations are represented by:

$$
\begin{gathered}
\mathrm{d} v / \mathrm{d} t=a \\
f=\mathrm{m} a
\end{gathered}
$$

D'Alembert: The node equations

Robotics and Mechatronics Centre

When we add another component to the node....

- ...only the equations of the node change, but the equations of the individual components remain untouched.

D`Alembert’s Principle: Summary

- D'Alembert's principle is not an actual physical law. It represents a methodology to obtain a correct set of differential-algebraic equations for arbitrary mechanical systems.
- D'Alembert's principle reveals itself to be simple and elegant for this purpose, but it is by no means a triviality.

Kirchhoff`s Circuit Laws

- Whereas D'Alembert's principle provides a method to derive a correct set of equations for rigidly constrained mechanical components, Gustav Kirchhoff accomplished a similar task for the electrical domain.
- In 1845, he stated his two famous circuit laws.

Gustav Robert Kirchhoff 1824-1887

The 1st Circuit Law

Robotics and Mechatronics Centre

- The first circuit law states that for each electrical node, the sum of the incoming currents must equal the sum of the outgoing currents.

$$
\Sigma i_{\text {in }}=\Sigma i_{\text {out }}
$$

- Unfortunately, it not always clear in what direction the current is flowing.

The 1st Circuit Law

- Fortunately, we can transform this law into a more convenient form, by defining the flow direction and allowing negative currents.
- If we define that the current always flows from the node into the components, we can state:

$$
\Sigma i_{n}=0
$$

The 2nd Circuit Law

- The second circuit law is the mesh (or loop) rule.
- It states that the directed sum of the electrical voltages around any closed circuit must be zero.

$$
\Sigma u_{n}=0
$$

- This form is rather inconvenient since it requires to decompose the electric circuit into its loops.

The 2nd Circuit Law

Robotics and Mechatronics Centre

- Also this rule can be transformed into a more convenient form.
- To this end, we ground the circuit.
- Now, we can assign an electric potential v (Spannungspotential) to each node .
- Kirchhoff's mesh rule is now equivalent to the node equation

$$
v_{1}=v_{2}=\ldots=v_{n}
$$

- The voltage potentials at each node must be equal.

Kirchhoff's Laws in Action

Let us model a simple electric circuit:

Kirchhoff's Laws in Action

Let us model a simple electric circuit:

Kirchhoff's Laws in Action

First we start with the component equations

- The grounding is easy
(2 unknowns, 1 equation):

$$
V_{G}=0
$$

- The voltage source connects two nodes: (4 unknowns, 2 equations)

$$
\begin{gathered}
\mathrm{i}_{\mathrm{s} 1}+\mathrm{i}_{\mathrm{s} 2}=0 \\
\mathrm{v}_{\mathrm{s} 1}+10 \mathrm{~V}=\mathrm{v}_{\mathrm{s} 2}
\end{gathered}
$$

Kirchhoff's Laws in Action

First we start with the component equations

- The resistor is modeled by famous Ohm's law: (5 unknowns, 3 equations)

$$
u_{R}=R^{*} i_{R 1}
$$

with

$$
\begin{gathered}
i_{R 1}+i_{R 2}=0 \\
v_{R 1}+u_{R}=v_{R 2}
\end{gathered}
$$

Kirchhoff's Laws in Action

First we start with the component equations

- The capacitor contains a differential equation. The voltage is induced by a charge. The derivative of the charge is the current. (5 unknowns, 3 equations)

$$
\mathrm{C}^{*} \mathrm{~d} \mathrm{u}_{\mathrm{c}} / \mathrm{d} t=\mathrm{i}_{\mathrm{C} 1}
$$

with

$$
\begin{gathered}
\mathrm{i}_{\mathrm{C} 1}+\mathrm{i}_{\mathrm{C} 2}=0 \\
\mathrm{v}_{\mathrm{C} 1}+\mathrm{u}_{\mathrm{C}}=\mathrm{v}_{\mathrm{C} 2}
\end{gathered}
$$

Kirchhoff's Laws in Action

Then we continue by applying
Kirchhoff's law for each node:

$$
\begin{gathered}
\mathrm{v}_{\mathrm{S} 2}=\mathrm{v}_{\mathrm{R} 1} \\
\mathrm{i}_{\mathrm{S} 2}+\mathrm{i}_{\mathrm{R} 1}=0 \\
\mathrm{v}_{\mathrm{R} 2}=\mathrm{v}_{\mathrm{C} 1} \\
\mathrm{i}_{\mathrm{R} 2}+\mathrm{i}_{\mathrm{C} 1}=0 \\
\\
\mathrm{v}_{\mathrm{C} 2}=\mathrm{v}_{\mathrm{G}} \\
\mathrm{v}_{\mathrm{S} 1}=\mathrm{v}_{\mathrm{G}} \\
\mathrm{i}_{\mathrm{C} 2}+\mathrm{i}_{\mathrm{S} 1}+\mathrm{i}_{\mathrm{G}}=0
\end{gathered}
$$

Kirchhoff's Laws in Action

Robotics and Mechatronics Centre

Then we continue by applying
Kirchhoff's law for each node:

Kirchhoff's Laws in Action

When we collect all equations, we count 16 equations and 16 unknowns. The system of differential-algebraic equations is complete.

$$
\begin{gathered}
\mathrm{v}_{\mathrm{S} 2}=\mathrm{v}_{\mathrm{R} 1} \\
\mathrm{i}_{\mathrm{S} 2}+\mathrm{i}_{\mathrm{S} 1}=0 \\
\mathrm{v}_{\mathrm{R} 2}=\mathrm{v}_{\mathrm{C} 1} \\
\mathrm{i}_{\mathrm{R} 2}+\mathrm{i}_{\mathrm{C} 1}=0 \\
\mathrm{v}_{\mathrm{C} 2}=\mathrm{v}_{\mathrm{G}} \\
\mathrm{v}_{\mathrm{S} 1}=\mathrm{v}_{\mathrm{G}} \\
\mathrm{i}_{\mathrm{C} 2}+\mathrm{i}_{\mathrm{S} 1}+\mathrm{i}_{\mathrm{G}}=0
\end{gathered}
$$

$$
\begin{gathered}
v_{G}=0 \\
i_{S 1}+i_{S 2}=0 \\
v_{S 1}+10 V=v_{S 2} \\
u_{R}=R^{*} i_{\mathrm{R} 1} \\
I_{\mathrm{R} 1}+\mathrm{I}_{\mathrm{R} 2}=0 \\
\mathrm{v}_{\mathrm{R} 1}+\mathrm{u}_{\mathrm{R}}=\mathrm{v}_{\mathrm{R} 2} \\
\mathrm{C}^{*} \mathrm{du}_{\mathrm{C}} / \mathrm{dt}=\mathrm{i}_{\mathrm{C} 1} \\
\mathrm{I}_{\mathrm{C} 1}+\mathrm{I}_{\mathrm{C} 2}=0 \\
\mathrm{v}_{\mathrm{C} 1}+{ }_{\mathrm{uC}}=\mathrm{v}_{\mathrm{C} 2}
\end{gathered}
$$

Node equations
Component Equations

Object-Orientation

In this way, Kirchhoff enabled the object-oriented modeling of electric systems.

- By having general laws for the junctions between components, the equations of the individual components become generally applicable and reusable.
- Kirchhoff's laws prove that the junction structure of an electrical circuit provides a general interface for all potential electric components. The implementation of a component (its internal equations) can therefore be separated from the interface (its nodes).
- The interface of a component describes how the components can be applied, whereas the implementation describes what is its internal functionality. Components with equivalent interface can be generically interchanged.
- Known circuits can be extended by adding further junctions and components. Knowledge can be inherited.

Object-Orientation

- The highlighted terms represent keywords or motivations common to object-oriented programming.
- Next week, we are going to see how the modeling perspective of objectorientation is realized within a computer language.

Questions?

