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Attentive students may have noticed that we have done the same thing 
twice in the last hour. 

• For mechanic or electric systems, the procedure was actually the same. 

• First we decomposed the system into different components that are 
connected by a junction structure. 

 

 

 

 

 

• Then, we separated the component equations from the connection 
equations. 
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• For each node in the junction structure, we defined a set of equations. 

• Each node was represented by a pair of variables 

 A potential variable 

  v (voltage potential for electrics) 

  v (velocity for mechanics) 

 

 and a flow variable  

  i (current for electrics) 

  f (force for mechanics) 

 

 

 

 

 

 

Connector variables 
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• For one connection between a set of n nodes, n equations have to be 
generated. 

 

• n-1 equalities 

 In electrics: v1 = v2 = … = vn (Kirchhoff`s 2nd law) 

 In mechanics: v1 = v2 = … = vn (Rigid constraint equation) 

 

• 1 balance equation 

 In electrics: i1 + i2 + … + in= 0 (Kirchhoff`s 1st law) 

 In mechanics: f1 + f2 + … + fn  = 0 (D`Alembert`s Principle) 

 

 

 

 

 

 

 

Connector equations 
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But there is more to it: 

• What does the product of the mechanic pair of connector variables 
represent? 

  v [m/s] ∙ f [N] = p [Nm/s]  

 It represents a flow of energy! [Nm] is work/energy 

 

• What does the product of the electric pair of connector variables 
represent? 

  v [Nm/C] ∙ I [C/s] = p [Nm/s] 

 It represents a flow of energy too! 

 This is not a coincidence! It indicates a general physical principle! 

 

 

 

 

 

 

 

 

 

Energy flows 
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Each component exhibits a certain behavior 
w.r.t. energy 

• There is a flow into the component at a 
certain level of energy. 

• There is a flow out of the component at a 
possibly different level of energy. 

• The difference between the two levels of 
energy represents work! 

• The difference between the two flows 
represents power! (work per time) 

• Energy is a potential size, whereas work 
represents the difference. This is the same 
distinction as between voltage and voltage 
potential. 

 

 

 

 

 

 

 

 

 

Energy flows and power 

v2 = 4V, i2 = -0.1A 

v1 = 10V, i1 = 0.1A 
 

u = -6V, i = 0.1A 
Power: -0.6W 
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Example for clarification 

• If I change the grounding voltage of 
an electric circuit… 

 

 

 

 

 

 

Energy flows and power 
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Example for clarification 

• If I change the grounding voltage of 
an electric circuit (from 0V to 50V)… 

 

 

 

 

 

 

Energy flows and power 
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Example for clarification 

• If I change the grounding voltage of 
an electric circuit (from 0V to 50V)… 

• …all energy flows at the connector 
change. 

• But the power across the 
components remains the same! 

• Potential variables are auxiliary 
variables. For the physical behavior, 
only the difference between 
potentials does matter.  

 (There are exceptions where the potentials cannot 
be chosen arbitrarily) 

 

Energy flows and power 
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Some components dissipate energy 

 

 

 

 

 

 

  Resistor    Damper 

  u = R*i     ∆v = D-1*f 

 

 

 

 

 

Energetic behavior 
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Some components store energy (by integrating the flow variable): 

 

 

 

 

 

 

  Capacitor   Mass 

  du/dt ∙ C = I   dv/dt ∙ M = f (Newton’s Law) 

  (Storage of charge)  (Storage of kinetic energy) 

 

 

 

 

 

 

Energetic behavior 
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Some components store energy (by integrating the potential variable): 

 

 

 

 

 

 

  Inductance   Spring 

  di/dt ∙ L = u    df/dt ∙ C-1 = ∆v  

  (The energy is stored in the magnetic field) (Velocity is integrated to position) 

      (this is not a good analogy, though) 

 

Energetic behavior 
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Some components transform energy 

 

 

 

 

 

 

  Transformer   Linkage 

  u2 = M ∙ u1   v2 = G ∙ v1 

  M ∙ i2  = i1    G ∙ f2 = f1 

   

       

Energetic behavior 
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Some components represent a source or sink of energy 

 

 

 

 

 

 

  Current Source   Constant force 

  i = I0     f = f0 

 

Energetic behavior 
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Some components represent a source or sink of energy 

 

 

 

 

 

 

  Voltage Source   Constant velocity 

  u = U0     ∆v = V0 

 

 

Energetic behavior 
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+ Sink or Source? 

V1=10
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R=100

R

G

The current flows in this direction 

Here, the current 
flows against the  
gradient of the  
potential voltage 
 
 Energy Source 

Here, the current 
flows along the  
gradient of the  
potential voltage 
 
 Energy Sink 

 

 A source of voltage is not necessarily a source of energy! 
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We have seen that mechanical and electrical systems can be modeled the 
same way 

 

• What about other physical domains? 
 

• Can Kirchhoff`s Laws be generalized for the complete field of 
thermodynamics? 

 

 

 

 

Bond Graphs 
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The answer is bond graphs. 

• Here the complete system is abstracted by energy-flows. 

 

 

 

 

 

 

 

 

Bond Graphs 

 
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For each physical domain, there is a specific pair of effort / flow variables 

 

 

 

 

 

 

 

 

Bond Graphs 

Domain Potential Flow 

Translational Mechanics Velocity: v [m/s] Force: f [N] 

Rotational Mechanics Angular Velocity: ω [1/s] 
 

Torque: τ [Nm] 
 

Electrics Voltage Potential v [V] Current i [A] 

Magnetics Magnetomotive Force:  
Θ [A] 

Time-derivative of  
Magnetic Flux: Φ [V] 

Hydraulics Pressure p [Pa] Volume flow rate V [m3/s] 

Thermal Temperature T[K] Entropy Flow Rate S [J/Ks] 

Chemical Chemical Potential: μ 
[J/mol] 

Molar Flow Rate v [mol/s] 

∙ 

∙ 

∙ 
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Bond graphs have been invented by Henry M. Paynter on April 24, 1959 

 

 

 

 

 

 

 

 

• Again, an actually trivial generalization of Kirchhoff’s laws took more 
than a century to be developed. 

 

 

 

 

 

 

 

 

Bond Graphs 
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In this lecture, bond graphs are not the matter of subject, but we can profit 
from the major principle that underpins this methodology. 

 

• For all physical domains, there is a correspondent pair of connector 
variables. Their product represents a flow of energy. 

 

• The components all exhibit a certain energetic behavior. 

 

• In this way, we do not have to acquire the physical knowledge domain by 
domain. Instead we apply the general principles of thermodynamics. 

  

 

 

 

Bond Graphs: Summary 
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By modeling with energy flows, we 
can profit form the general 
laws of thermodynamics. 

 

 

• The first law of thermo-
dynamics states that within a 
closed system, the total 
amount of energy remains 
constant.  

 

• This means that the sum of all 
powers quantities across the 
components must be zero. 

Conservation of Energy 
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Any dissipative component represents a relates the flow F with a difference 
of potentials ∆P. 

   

 

 

  ∆P = f(F) 

 

  

 

 

• The corresponding function f(…) must be located in first and third 
quadrant (and cross the origin). 

 

Energetic correct behavior 

I II 

III IV 
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Any storage component relates one of the two variables with the time-
derivative of its partner.  

  

 

  d∆P/dt  = f(F) 

  or   

 dF/dt  = f(∆P)  

 

 

 

• Also here: the corresponding function f(…) must be located in first and 
third quadrant (and cross the origin). 

 

Energetic correct behavior 

I II 

III IV 



© Dirk Zimmer, October 2014, Slide 28 

Robotics and Mechatronics Centre 

+ 

Using energy flows, we can also model across multiple domains 

• An electrical engine represents a transformer from electrical energy to 
mechanic (rotational) energy. Energy is conserved. 

 

 

 

   τ = K∙i 

   K ∙ ω  = u 

 

• K is the Motor-Torque Constant 

  

 

Multi-Domain Modeling 
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Using energy flows, we can also model across multiple domains 

• A piston represents a transformer (more precisely: a gyrator) from the 
mechanical domain into the hydraulic domain. Also here, energy is 
conserved. 

 

 

   p ∙ A = f 

   V = v ∙ A 

 

• A is the area of the piston 

 

 

Multi-Domain Modeling 
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• Ideally, any form of energy can be completely transformed into any 
other. (Practically, all transformations involve dissipation.) 
 

• The dissipation of energy represents the transformation of energy into 
thermal energy. 
 

• But there is one important exception: The 2nd law of thermodynamics 
states that entropy can only increase. 
 

• The thermal domain possesses the flow of entropy as connector 
variable. This means, that for any thermal sub-system the inflow must be 
equal or greater than the outflow. 
 
 

The 2nd Law of Thermodynamics 
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• Thermal energy can only be transformed into other forms of energy up 
to a limited extent. 

• In order to transform thermal energy into any other form, we need a 
temperature gradient between two reservoirs Tcold and Thot. 

• The precise limit of the efficiency is determined by the Carnot Factor. 
This is the 3rd law of Thermodynamics. 

 

 ηC = 1 – Tcold/Thot   

 (Temperature in Kelvin) 

 

• Since Tcold > 0  ηC < 1 

 

The 3rd Law of Thermodynamics 
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• All physical connections can be represented by a pair of a potential 
variable and a flow variable whose product represents energy flow. 

• Using this knowledge, the equations for the connections can be 
automatically generated. 

• All components exhibit a certain energetic behavior. Once we 
understand the energetic behavior, we can apply it in various physical 
domains. 

• Interaction between domains is represented by a transformation of 
energy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Summary 
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• Next week, we are going to learn how to punch all this into a computer! 

 

• Don’t worry if you haven’t understood every single component equation. 
We will look at the modeling of electrical and mechanical systems in 
depth. 

 

 

 

 

 

Summary 



Questions ? 
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