Virtual Physics
 Equation-Based Modeling

TUM, November 03, 2014

1D-Mechanical Systems

Dr. Dirk Zimmer

Potential and Flow

For each physical domain, there is a specific pair of effort / flow variables

Domain	Potential	Flow
Translational Mechanics	Velocity: $v[\mathrm{~m} / \mathrm{s}]$	Force: $f[\mathrm{~N}]$
Rotational Mechanics	Angular Velocity: $\omega[1 / \mathrm{s}]$	Torque: $\tau[\mathrm{Nm}]$
Electrics	Voltage Potential $\mathrm{v}[\mathrm{V}]$	Current $\mathrm{i}[\mathrm{A}]$
Magnetics	Magnetomotive Force: $\Theta[\mathrm{A}]$	Time-derivative of Magnetic Flux: $\dot{\Phi}[\mathrm{V}]$
Hydraulics	Pressure $p[\mathrm{~Pa}]$	Volume flow rate $\mathrm{V}\left[\mathrm{m}^{3} / \mathrm{s}\right]$

Potential and Flow

For the mechanical domain, the first two are relevant:

Domain	Potential	Flow
Translational Mechanics	Velocity: v [m/s]	Force: f [N]
Rotational Mechanics	Angular Velocity: ω [1/s]	Torque: τ [Nm]
Electrics	Voltage Potential v [V]	Current i [A]
Magnetics	Magnetomotive Force: $\Theta[\mathrm{A}]$	Time-derivative of Magnetic Flux: $\dot{\Phi}[\mathrm{V}]$
Hydraulics	Pressure p [Pa]	Volume flow rate $\mathcal{V}\left[\mathrm{m}^{3} / \mathrm{s}\right]$
Thermal	Temperature T[K]	Entropy Flow Rate $\dot{\mathrm{S}}$ [J/Ks]
Chemical	Chemical Potential: μ [J/mol]	Molar Flow Rate v [mol/s]

Potential and Flow

- Each node was represented by a pair of variables

A potential variable
v (velocity for translational mechanics)
ω (angular velocity for rotational mechanics)
and a flow variable
f (force for translational mechanics)
τ (force for rotational mechanics)

Potential and Flow

- For one connection between a set of n nodes, n equations have to be generated.
- n -1 equalities

Translational: $\mathrm{v}_{1}=\mathrm{v}_{2}=\ldots=\mathrm{v}_{\mathrm{n}}$
Rotational: $\omega_{1}=\omega_{2}=\ldots=\omega_{n}$

- 1 balance equation

Translational: $f_{1}+f_{2}+\ldots+f_{\mathrm{n}}=0$
Rotational: $\tau_{1}+\tau_{2}+\ldots+\tau_{n}=0$

Holonomic Constraints

But the Modelica Standard Library supports different potential variables.

- Not the velocity v but the position s
- Not the angular velocity ω but the angle φ

```
connector Flange_a
    SI.Position s;
    flow SI.Force f
end Flange_a;
```

```
connector Flange_a
    SI.Angle phi;
    flow SI.Torque tau;
end Flange_a;
```

- Why is this? Is our table incorrect?

Holonomic Constraints

- No, the table is correct but the correct formulation of mechanical system adds another requirement:

The formulation of holonomic constraints!

- Holonomic Constraints are algebraic constraints on the level of position.
- A rigid rod describes a given distance between two flanges. Here two positions are bound with one constraint equation.
- In order, to formulate such equations correctly, the position needs to be part of the connector.

Holonomic Constraints: Example

- Let us model a simple system:
- Two masses connected to springs.
- The position s_{1} and s_{2} are connected by the following holonomic constraint:

$$
s_{1}=\left|s_{2}\right| * s_{2}
$$

- Such non-linear constraints are rare in 1D systems but common in multidimensional systems.

Holonomic Constraints: Example

- Here is a handwritten Modelicacode for this example:
- The two variables s1_int and s2_int are used to formulate the constraints.
- On the next slide you see the simulation result (the positions of the two masses).
model TwoSpringsWithConstraint
Real s1;
Real s2;
Real v1;
Real v2;
Real f;
parameter Real m1 = 10;
parameter Real m2 = 2;
Real s1_int;
Real s2_int;
equation
v1 = der(s1);
v2 = der(s2);
-1*s1 + f = m1*der(v1);
-20*(s2-5) - f = m2*der(v2);
s1 = s1_int;
s2 = s2_int;
s1_int = abs(s2_int)*s2_int; end TwoSpringsWithConstraint;

Holonomic Constraints: Example

Robotics and Mechatronics Centre

Holonomic Constraints: Example

- But couldn't we formulate the same system, using just the velocities V1 and $\mathbf{~} \mathbf{2}$ instead of the positions $\mathbf{s} 1$ and $\mathbf{s} 2$?
- We could formulate s1_int and s2_int as integrals for v1 and v2.
- Here is why not: (using DASSL with tolerance 0.01):
model TwoSpringsWithConstraint
Real s1;
Real s2;
Real v1;
Real v2;
Real f;
parameter Real m1 = 10;
parameter Real m2 = 2;
Real s1_int;
Real s2_int;

equation

v1 = der(s1);
v2 = der(s2);
-1*s1 + f = m1*der(v1);
-20*(s2-5) - f = m2*der(v2);
v1 = der(s1_int);
v2 = der(s2_int);
s1_int = abs(s2_int)*s2_int; end TwoSpringsWithConstraint;

Holonomic Constraints: Example

Holonomic Constraints: Example

- What has happened? Why does the system behave differently?
- Since s1 and s1_int are not algebraically coupled, they are separately integrated.
- The same holds for s2 and s2_int.
- Hence, the holonomic constraints becomes subject to an increasing numerical integration error.
- This can drastically change the systems behavior.
model TwoSpringsWithConstraint
Real s1;
Real s2;
Real v1;
Real v2;
Real f;
parameter Real m1 = 10;
parameter Real m2 = 2;
Real s1_int;
Real s2_int;
equation
v1 = der(s1);
$\mathrm{v} 2=\operatorname{der}(\mathrm{s} 2)$;
-1*s1 + f = m1*der(v1);
-20*(s2-5) - f = m2*der(v2);
v1 = der(s1_int);
v2 = der(s2_int);
s1_int = abs(s2_int)*s2_int; end TwoSpringsWithConstraint;

Holonomic Constraints: Example

- What has happened? Why does the system behave differently?
- Since s1 and s1_int are not algebraically coupled, they are separately integrated.
- The same holds for s2 and s2_int.
- Hence, the holonomic constraints becomes subject to an increasing numerical integration error.
- This can drastically change the systems behavior.
- So... DON’T!
model TwoSpringsWithConstraint
Real s1;
Real s2;
Real v1;
Real v2;
Real f;
parameter Real m1 = 10;
parameter Real m2 = 2;
Real s1_int;
Real s2_int;
equation
v1 = der(s1);
$\mathrm{v} 2=\operatorname{der}(\mathrm{s} 2)$;
-1*s1 + f = m1*der(v1);
-20*(s2-5) - f = m2*der(v2);
$\mathrm{v} 1-\operatorname{der}(\mathrm{si}$-int);
$\forall 2=\operatorname{der}(\mathrm{s} 2$ _int $) ;$
s1_int = abs(s2_int)*s2_int; end TwoSpringsWithConstraint;

Holonomic Constraints

- For our mechanical components, this means that we have to use positions as potential variables:
- Each node was represented by a pair of variables

A potential variable
s (position for translational mechanics)
φ (angle for rotational mechanics)
and a flow variable
f (force for translational mechanics)
τ (force for rotational mechanics)

Potential and Flow

- We see that the new potential equations imply the old ones:
- n -1 equalities

Translational: $\mathrm{s}_{1}=\mathrm{s}_{2}=\ldots=\mathrm{s}_{\mathrm{n}}$ implies $\mathrm{v}_{1}=\mathrm{v}_{2}=\ldots=\mathrm{v}_{\mathrm{n}}$
Rotational: $\varphi_{1}=\varphi_{2}=\ldots=\varphi_{n}$ implies $\omega_{1}=\omega_{2}=\ldots=\omega_{n}$

- 1 balance equation

Translational: $f_{1}+f_{2}+\ldots+f_{n}=0$
Rotational: $\tau_{1}+\tau_{2}+\ldots+\tau_{n}=0$

The information about the energy flow is still contained in our connector variables!

Dampers

Now we can model the components: The dampers

$$
\begin{array}{ll}
\Delta \mathrm{v} \cdot \mathrm{D}=f & \Delta \omega \cdot \mathrm{D}=\tau \\
\Delta \mathrm{v}=\mathrm{d}\left(\mathrm{~s}_{2}-\mathrm{s}_{1}\right) / \mathrm{d} t & \Delta \omega=\mathrm{d}\left(\varphi_{2}-\varphi_{1}\right) / \mathrm{d} t \\
f=f_{2} & \tau=\tau_{2} \\
0=f_{1}+f_{2} & 0=\tau_{1}+\tau_{2}
\end{array}
$$

Dampers

Now we can model the components: The dampers

$$
\begin{array}{ll}
\Delta \mathrm{v} \cdot \mathrm{D}=f & \text { This is totally fine } \\
\hline \Delta \mathrm{v}=\mathrm{d}\left(\mathrm{~s}_{2}-\mathrm{s}_{1}\right) / \mathrm{d} t & \Delta \omega \cdot \mathrm{D}=\tau \\
\hline f=f_{2} & \Delta \omega=\operatorname{der}\left(\varphi_{2}-\varphi_{1}\right) / \mathrm{d} t \\
0=f_{1}+f_{2} & \tau=\tau_{2} \\
& 0=\tau_{1}+\tau_{2}
\end{array}
$$

The derivatives are computed
symbolically not numerically

Springs

Robotics and Mechatronics Centre

The springs: Since the new formulation is based on the positions, the model does not own a derivative anymore.

$$
\begin{array}{ll}
\Delta \mathrm{s} \cdot \mathrm{C}=f & \Delta \varphi \cdot \mathrm{C}=\tau \\
\Delta \mathrm{s}=\left(\mathrm{s}_{2}-\mathrm{s}_{1}\right)-\mathrm{s} 0 & \Delta \varphi=\left(\varphi_{2^{-}}\right. \\
f=f_{2} & \tau=\tau_{2} \\
0=f_{1}+f_{2} & 0=\tau_{1}+\tau_{2}
\end{array}
$$

Mass and Inertia

Whereas the spring components have lost their integrator, the mass and inertia have gained one:

Transformers

The transformer is represented by a gearbox. Its equation has hardly changed.

$$
\begin{aligned}
\varphi_{2} & =\text { Ratio } \cdot \varphi_{1} \\
\tau_{1} & =\text { Ratio } \cdot \tau_{2}
\end{aligned}
$$

Transformers

An ideal rolling wheel represents a transformation between translational and rotational movement.

Ideal rolling means that the velocity of the virtual contact point is zero. The virtual contact point is located on the wheel.

Radius • $\varphi=s$

$$
\tau=\text { Radius } \cdot f
$$

Ball with counter spin

- Finally, let us model a simple mechanical system.
- A ball is placed on a table and propelled forwards with reverse spin. Eventually the spin will decelerate the ball and force him to roll backwards.
- Here is a first model of such a system.

Ball with counter spin

Robotics and Mechatronics Centre

Dry Friction

- The damper generates a friction force that is proportional to the difference in velocity.

- The damper is not a good friction model. It is too "smooth".
- Instead we want to use a dry friction model instead.

Dry Friction

- The characteristic curve for dry friction is a multi-valued function and hence very tricky.

- The adhesive friction ("stiction") is stronger than dry friction while sliding. The friction force always counteracts the movement.
- Hence, the curve contains discontinuities and represents infinite stiffness.
- The curve can also not be properly described by a mathematical function.
- Hence, the dry friction model of Modelica is pretty complicated and contains many language elements we do not know yet.

- Since we cannot cope with these discontinuities yet, we try to avoid them.
- We do so be regularizing the characteristic curve.

Dry Friction: Regularization

- To this end, we "stretch" the curve and transform it into a piecewise linear function.

- The cost of this approach is: loss of precision and/or artificial stiffness.

Dry Friction: Regularization

- Instead of generating a piecewise linear function, we can also compose the function using three S-functions and two constant functions.

- The result is a nicely differentiable function.

Dry Friction: Regularization

- Instead of generating a piecewise linear function, we can also compose the function using three S-functions.

- The result is a nicely differentiable function.

Dry Friction: S-Function

- For the S-Function, we use a polynomial:

$$
y=-x^{3} / 2+3 x / 2
$$


```
function S_Func
    input Real x;
```

algorithm

```
if x > 1 then
    y := 1;
    elseif x < -1 then
        y := -1;
    else
    y := -0.5*x^3 + 1.5*x;
    end if;
```

end S_Func;

Dry Friction: S-Function

- For the S-Function, we use a polynomial:
$y=-x^{3} / 2+3 x / 2$
- Then, we provide inputs in order to scale the function to fit an arbitrary rectangle (x_min, y_min, x_max, y_max)
- The annotation tells Dymola that the function is differentiable once. So they are no discontinuities.
- This is important for the ODEsolver.

```
function S_Func "Models an S-Function"
    input Real x_min;
    input Real x_max;
    input Real y_min;
    input Real y_max;
    input Real x;
    output Real y;
protected
    Real x2;
algorithm
    x2 := x - x_max/2 - x_min/2;
    x2 := x2*2/(x_max-x_min);
    if x2 > 1 then
        y := 1;
    elseif x2 < -1 then
        y := -1;
    else
        y := -0.5*x2^3 + 1.5*x2;
    end if;
    y := y*(y_max-y_min)/2;
    y := y + y_max/2 + y_min/2;
    annotation(smoothOrder=1);
end S_Func;
```


Dry Friction: Triple S-Function

- We may use the S-Function in order to compose the pointsymmetric Triple S-Function:


```
function TripleS_Func
    input Real x_max;
    input Real x_sat;
    input Real y_max;
    input Real y_sat;
    input Real x;
    output Real y;
algorithm
    if x > x_max then
        y := S_Func(x_max,x_sat,
            y_max,y_sat,x);
    elseif x < -x_max then
        y := S_Func(-x_max,-x_sat,
            -y_max,-y_sat,x);
    else
        y := S_Func(-x_max,x_max,-
        y_max,y_max,x);
    end if;
    annotation(smoothOrder=1);
end TripleS_Func;
```


Dry Friction Model

- Now we can model our own dry friction component:
model DryFriction
extends Modelica.Mechanics.
Translational.Interfaces.
PartialCompliantWithRelativeStates;
import SI = Modelica.SIunits;
parameter SI.Force N
"normal force";
parameter SI.Velocity vAdhesion
"adhesion velocity";
parameter SI.Velocity vSlide
"sliding velocity";
parameter Real mu_A
"friction coefficient at adhesion";
parameter Real mu_S
"friction coefficient at sliding";
equation
f = N*TripleS_Func(vAdhesion, vSlide, mu_A, mu_S, v_rel);
end DryFriction;

Counter spin and dry friction

- Here is the application of our dry-friction component.

Counter spin and dry friction

Summary

- Rotational and translational mechanics can be treated he same way.
- The proper formulation of mechanical systems requires the formulation of holonomic constraints.
- In order to enable this, positions and not velocities form the potential connector variables.
- Consequently, the derivatives are redistributed within the components.
- We learnt about dry friction and regularization.

Questions?

