Virtual Physics
 Equation-Based Modeling

TUM, November 03, 2014

2D-Mechanical Systems

Dr. Dirk Zimmer
German Aerospace Center (DLR), Robotics and Mechatronics Centre

Planar Mechanics

- In planar mechanics, we describe the physics of a multi body system in a two-dimensional plane.

- In the planar world, all motions and positions can be described by two translational positions and an angular orientation
- By convention we denote the horizontal position with x , the vertical position with y and the orientation by the angle φ (phi).

The Task

- In this lecture, we want to start modeling our own library for planar mechanics.
- The design of a library is a very multifaceted task. We have to concern:
- the structure of the library
- the design of the connector
- usability of the components
- effective code reuse
- solutions for initialization
- and many things more

Decomposition into components

- The first question that we have to address concerns how we want to decompose a planar mechanical system into ideal components.
- Let us investigate an example: The crane crab.

Decomposition into components

- The crane-crab has two degrees of freedom: The horizontal movement of the carriage wagon and the load revolting like a pendulum.
- The carriage and the load possess mass and an inertia
- The cable has given length.

Decomposition into components

- There shall be one ideal component that represents mass and inertia.
- All other components shall be weightless.
- Some parts represent geometric objects, like a rod of finite length.
- The degrees of freedom in motion can be expressed by special joints.
- Furthermore, there are "force" components like springs and dampers.

Decomposition into components

- Here is a quick layout of the library...
- Parts
- Body (Mass and Inertia)
- FixedTranslation
- FixedRotation
- Joints
- Revolute Joint
- Prismatic Joint
- Forces

- Spring
- Damper

Decomposition into components

- ...and the corresponding
decomposition of the crane crab.
- Parts
- Wall
- Body (Mass and Inertia)
- FixedTranslation
- FixedRotation
- Joints
- Revolute Joint
- Prismatic Joint
- Forces
- Spring

- Damper

Decomposition into components

Robotics and Mechatronics Centre

- ...and the corresponding
decomposition of the crane crab.
- Parts
- Wall
- Body (Mass and Inertia)
- FixedTranslation
- FixedRotation
- Joints
- Revolute Joint
- Prismatic Joint
- Forces
- Spring

- Damper

Decomposition into components

Robotics and Mechatronics Centre

- All components of this library shall use one common connector.
- Parts
- Wall
- Body (Mass and Inertia)
- FixedTranslation
- FixedRotation
- Joints
- Revolute Joint
- Prismatic Joint
- Forces
- Spring

- Damper

Connector Variables

- From 1D-mechanics, we learned that the we should choose force and torque as flow-variables and position and angle as potential variables.
- Planar mechanics combine three 1D-subsytems. Hence the following connector design seems natural.

Potential variables

$$
\begin{aligned}
& \text { x (horizontal position) } \\
& \text { y (vertical position) } \\
& \varphi \text { (orientation angle) }
\end{aligned}
$$

Flow variables
f_{x} (horizontal force)
f_{y} (vertical force)
τ (torque)

Connector Variables: Modelica

Robotics and Mechatronics Centre

- Here, the corresponding Modelica-Code:

```
connector Frame "General Connector for planar mechanical components,,
    SI.Position x
    SI.Position y
    SI.Angle phi
    flow SI.Force fx
    flow SI.Force fy
    flow SI.Torque t
```

"x-position";
"y-position";
"angle (clockwise)";
"force in x-direction";
"force in y-direction";
"torque (clockwise)";

```
end Frame;
```


Connectors

- It is common style to extend two connectors with different icons from the general connector.
- Some components contain characteristics that are directed. Hence it is helpful to see, if your connecting to side A or side B.

```
connector Frame_a
    extends Frame;
end Frame_a;
connector Frame_b
    extends Frame;
end Frame_b;
```


- All of these connectors are collected in an interface package.

Fixed Component

We can already model the first basic components. Let us start with the wall component that represents a fixation point.

```
model Fixed "FixedPosition"
    Interfaces.Frame_a frame_a;
    parameter SI.Position x = 0
    "fixed x-position";
    parameter SI.Position y = 0
    "fixed y-position";
    parameter SI.Angle phi = 0
    "fixed angle";
equation
    frame_a.x = x;
    frame_a.y = y;
    frame_a.phi = phi;
end Fixed;
```


Fixed Component

Robotics and Mechatronics Centre

There is an alternative way to formulate this model. Using the vector notation of Modelica, we can unite the x - and y-positions to a 2dimensional vector.

```
model Fixed "FixedPosition"
    Interfaces.Frame_a frame_a;
    parameter SI.Position r[2] = \{0,0\};
        "fixed x-position";
    parameter SI.Angle phi = 0
    "fixed angle";
equation
    \{frame_a.x, frame_a.y\} = r;
    frame_a.phi = phi;
end Fixed;
```


Body Component

- A little more elaborate is the body-component that represents a mass with inertia.

- Essentially, the model formulates Newton' s law.

```
model Body
    Interfaces.Frame_a frame_a;
    parameter SI.Mass m;
    parameter SI.Inertia I;
    SI.Force f[2];
    SI.Position r[2];
    SI.Velocity v[2];
    SI.Acceleration a[2];
    SI.AngularVelocity w;
    SI.AngularAcceleration z;
equation
    \(r=\left\{f r a m e \_a . x, f r a m e \_a . y\right\}\)
    \(v=\operatorname{der}(r)\);
    w = der(frame_a.phi);
    a = der(v);
    z = der(w);
    \(f=\left\{f r a m e \_a . f x, f r a m e \_a . f y\right\} ;\)
    f = m*a;
    frame_a.t = I*z;
end Body
```


Body Component

- Since the gravitational force is dependent on the mass ($\mathrm{m} * \mathrm{~g}$), it makes sense to compute right in the body model.

- A parameter for the gravitational acceleration is added and Newton's law is extended.

```
model Body
    Interfaces.Frame_a frame_a;
    parameter SI.Mass m;
    parameter SI.Inertia I;
    parameter SI.Acceleration[2] g={0,-9.81};
    SI.Force f[2];
    SI Position r[2];
    SI.Velocity v[2];
    SI.Acceleration a[2];
    SI.AngularVelocity w;
    SI.AngularAcceleration z;
equation
    r = {frame_a.x, frame_a.y}
    v = der(r);
    w = der(frame_a.phi);
    a = der(v);
    z = der(w);
    f = {frame_a.fx, frame_a.fy};
    f + m*g = m*a;
    frame_a.t = I*z;
end Body
```


Modelica's Vector Notation

Robotics and Mechatronics Centre

- Vectors of variables, parameters or components can be declared by using rectangular brackets:
SI.Position r[2]; or SI.Position[2] r;
- A vector can be composed out of scalars by using curly braces:

$$
r=\{0.2,13.4\}
$$

- Vectors can be added and subtracted and be multiplied by scalars:

$$
f+m^{*} g=m * a
$$

- Vectors can be multiplied with each other. This is the scalar product.
v*e

Modelica's Matrix Notation

- Matrices of variables, parameters or components can be declared by rectangular brackets

$$
\text { Real } \mathrm{R}[2,2] ; \quad \text { or } \quad \operatorname{Real}[2,2] \mathrm{R} \text {; }
$$

- A matrix can be expressed row-wise...

$$
R=\{\{1,2\},\{3,4\}\} \text { or } R=[1,2 ; 3,4]
$$

- ...or column-wise

$$
R=[\{1,3\},\{2,4\}]
$$

1	2
3	4

- Like with vectors, arithmetic operations can be performed on matrices. For instance, the matrix vector multiplication:

$$
y=R^{*} x ;
$$

Simulating the body model

- The body model contains 16 scalar variables and 13 scalar equation. There are 3 equation missing from connecting to the interface.
- Nevertheless, we can simulate the body model as a total system.
- This is possible, since for each connector that remains unconnected in the total system, all its flow variables are assumed to be zero.
- This means if we simulate the body model as total system, the following 3 equations are added to the system:
frame_a.fx = 0;
frame_a.fy = 0;
frame_a.t = 0;

Simulating the body model

Robotics and Mechatronics Centre

- Here is the simulation result:

- It shows the parabolic descent of a body due to gravity acceleration.

Components with two Flanges

- Components that have two frames are little more difficult.
- Let us start by modeling a neutral component.
- The model itself is rather meaningless but it represents a good starting point for the design of any new component.

```
model Neutral
    Interfaces.Frame_a frame_a;
    Interfaces.Frame_b frame_b;
```

```
equation
    frame_a.fx = 0;
    frame_a.fy = 0;
    frame_a.t = 0;
    frame_a.fx + frame_b.fx = 0;
    frame_a.fy + frame_b.fy = 0;
    frame_a.t
    + frame_b.t
    - (frame_b.x - frame_a.x)*frame_b.fy
    + (frame_b.y - frame_a.y)*frame_b.fx
    = 0;
end Neutral
```


Components with two Flanges

- The model imposes no constraints on the positions.
- This component has two frames, but exhibits no effect.
- The balance equations for the forces contains the lever principle.

$$
\begin{gathered}
\tau=\mathbf{f} \cdot \mathbf{e}_{\mathrm{n}} \cdot \mathrm{~s}=\mathbf{f} \cdot\left(\mathbf{e}_{\mathrm{n}} \cdot \mathrm{~s}\right) \\
\tau=(f x, f y) \cdot(s y,-s x)
\end{gathered}
$$

```
model Neutral
    Interfaces.Frame_a frame_a;
    Interfaces.Frame_b frame_b;
equation
    frame_a.fx = 0;
    frame_a.fy = 0;
    frame_a.t = 0;
    frame_a.fx + frame_b.fx = 0;
    frame_a.fy + frame_b.fy = 0;
    frame_a.t
    + frame_b.t
    - (frame_b.x - frame_a.x)*frame_b.fy
    + (frame_b.y - frame_a.y)*frame_b.fx
    = 0;
end Neutral
```


Components with two Flanges

Guidelines:

- For each positional constraint we add, we have to remove the corresponding force equation.
- For each variable that we add, we have to add an equation
- Finally, we may be able to simplify the balance equations.

```
model Revolute
    Interfaces.Frame_a frame_a;
    Interfaces.Frame_b frame_b;
```

```
equation
```

 frame_a.fx = 0;
 frame_a.fy = 0;
 frame_a.t = 0;
 frame_a.fx + frame_b.fx = 0;
 frame_a.fy + frame_b.fy = 0;
 frame_a.t
 + frame_b.t
 - (frame_b.x - frame_a.x)*frame_b.fy
 + (frame_b.y - frame_a.y)*frame_b.fx
 = 0;
 end Revolute

Revolute Joint

Robotics and Mechatronics Centre

Let us start with the revolute joint:

```
model Revolute
    Interfaces.Frame_a frame_a;
    Interfaces.Frame_b frame_b;
equation
    frame_a.fx = 0;
    frame_a.fy = 0;
    frame_a.t = 0;
    frame_a.fx + frame_b.fx = 0;
    frame_a.fy + frame_b.fy = 0;
    frame_a.t
    + frame_b.t
    - (frame_b.x - frame_a.x)*frame_b.fy
    + (frame_b.y - frame_a.y)*frame_b.fx
    = 0;
end Revolute
```


Revolute Joint

Let us start with the revolute joint:

- The translational positions of a and b are equal. (2 constraints)
- No torque can act on the joint.

```
model Revolute
```

model Revolute
Interfaces.Frame_a frame_a;
Interfaces.Frame_a frame_a;
Interfaces.Frame_b frame_b;
Interfaces.Frame_b frame_b;
equation
equation
frame_a.fx = 0 replaced by
frame_a.fx = 0 replaced by
frame_a.x = frame_b.x;
frame_a.x = frame_b.x;
frame_a.fy = 0 replaced by
frame_a.fy = 0 replaced by
frame_a.y = frame_b.y;
frame_a.y = frame_b.y;
frame_a.t = 0;
frame_a.t = 0;
frame_a.fx + frame_b.fx = 0;
frame_a.fx + frame_b.fx = 0;
frame_a.fy + frame_b.fy = 0;
frame_a.fy + frame_b.fy = 0;
frame_a.t
frame_a.t
+ frame_b.t
+ frame_b.t
- (frame_b.x - frame_a.x)*frame_b.fy
- (frame_b.x - frame_a.x)*frame_b.fy
+ (frame_b.y - frame_a.y)*frame_b.fx
+ (frame_b.y - frame_a.y)*frame_b.fx
= 0;
= 0;
end Revolute

```
end Revolute
```


Revolute Joint

Let us start with the revolute joint:

- The translational positions of a and b are equal. (2 constraints)
- No torque can act on the joint.
- The lever principle is redundant here...
- That's it! ...actually

```
model Revolute
    Interfaces.Frame_a frame_a;
    Interfaces.Frame_b frame_b;
```

equation

```
frame_a.fx = 0 replaced by
frame_a.x = frame_b.x;
frame_a.fy = 0 replaced by
frame_a.y = frame_b.y;
frame_a.t = 0;
frame_a.fx + frame_b.fx = 0;
frame_a.fy + frame_b.fy = 0;
frame_a.t + frame_b.t = 0;
```


Revolute Joint

Let us start with the revolute joint:

- For completeness, we'd like to add two differential equations for the angle, the angular velocity and its acceleration.
- After all, these variables are of interest.
- We can now use the joint in order to express motion.
- It also helps with initialization.

```
model Revolute
    Interfaces.Frame_a frame_a;
    Interfaces.Frame_b frame_b;
    SI.Angle phi
    SI.AngularVelocity w;
    SI.AngularAcceleration z;
equation
    frame_a.phi + phi = frame_b.phi;
    w = der(phi);
    z = der(w);
    frame_a.x = frame_b.x;
    frame_a.y = frame_b.y;
    frame_a.t = 0;
    frame_a.fx + frame_b.fx = 0;
    frame_a.fy + frame_b.fy = 0;
    frame_a.t + frame_b.t = 0;
```

end Revolute

Fixed Translation

Let us proceed with a rigid rod:

```
model FixedTranslation
    Interfaces.Frame_a frame_a;
    Interfaces.Frame_b frame_b;
```


equation

```
    frame_a.fx = 0;
    frame_a.fy = 0;
    frame_a.t = 0;
    frame_a.fx + frame_b.fx = 0;
    frame_a.fy + frame_b.fy = 0;
    frame_a.t
    + frame_b.t
    - (frame_b.x - frame_a.x)*frame_b.fy
    + (frame_b.y - frame_a.y)*frame_b.fx
    = 0;
end FixedTranslation
```


Fixed Translation

Let us proceed with a rigid rod:

- The length and direction of the rod is determined by the parameter vector $s=(s x, s y)$
- This vector is resolved w.r.t the body (coordinate) system.

```
model FixedTranslation
    Interfaces.Frame_a frame_a;
    Interfaces.Frame_b frame_b;
    parameter SI.Length r[2];
equation
    frame_a.fx = 0;
    frame_a.fy = 0;
    frame_a.t = 0;
    frame_a.fx + frame_b.fx = 0;
    frame_a.fy + frame_b.fy = 0;
    frame_a.t
    + frame_b.t
    - (frame_b.x - frame_a.x)*frame_b.fy
    + (frame_b.y - frame_a.y)*frame_b.fx
    = 0;
end FixedTranslation
```


Fixed Translation

Let us proceed with a rigid rod:

- We need to transform the vector r into the inertial frame r0 by a 2D rotation:
$\binom{\mathrm{rO}_{x}}{\mathrm{rO}_{\mathrm{y}}}=\left(\begin{array}{cc}\cos (\varphi) & \sin (\varphi) \\ -\sin (\varphi) & \cos (\varphi)\end{array}\right)\binom{r_{x}}{r_{y}}$

model FixedTranslation

Interfaces.Frame_a frame_a;
Interfaces.Frame_b frame_b;
parameter SI.Length r[2];
SI.Distance r0[2];
Real R[2,2];

equation

$$
\begin{aligned}
& R=\{\{\cos (\text { frane_a. phi), } \sin (\text { frane_a. phi) }\} \text {, } \\
& \{-\sin (\text { frane_a. phi) } \cos (\text { franea. } . \text { phi) }\}\} \\
& r 0=R^{*} r \text {; } \\
& \text { frame_a.fx = 0; } \\
& \text { frame_a.fy = 0; } \\
& \text { frame_a.t = 0; } \\
& \text { frame_a.fx + frame_b.fx = 0; } \\
& \text { frame_a.fy + frame_b.fy = 0; } \\
& \text { frame_a.t + frame_b.t } \\
& \text { - (frame_b.x - frame_a.x)*frame_b.fy } \\
& \text { + (frame_b.y - frame_a.y)*frame_b.fx } \\
& \text { = 0; } \\
& \text { end FixedTranslation }
\end{aligned}
$$

Fixed Translation

Robotics and Mechatronics Centre

Let us proceed with a rigid rod:

- Finally we can use sx0, sy0 to formulate the constraint equations and simplify the lever principle.

```
model FixedTranslation
    Interfaces.Frame_a frame_a;
    Interfaces.Frame_b frame_b;
    parameter SI.Length r[2];
    SI.Distance r0[2];
    Real R[2,2];
```

equation
$R=\{\{\cos ($ frane_a. phi$), \sin ($ frane_a. $\mathrm{ph} i)\}$,
$\left\{-\sin \left(\right.\right.$ frame_a. phi), $\cos \left(\right.$ frane_a. $\left.\left.\left.{ }^{\text {phi }}\right)\right\}\right\}$
$r 0=R^{*} r$;
frame_a.x + r0[1] = frame_b.x;
frame_b.y + r0[2] = frame_b.y;
frame_a.phi = frame_b.phi;
frame_a.fx + frame_b.fx = 0;
frame_a.fy + frame_b.fy = 0;
frame_a.t + frame_b.t
+ r0*\{-frame_b.fy,frame_b.fx\} = 0;
end FixedTranslation

Fixed Translation

Robotics and Mechatronics Centre

Let us proceed with a rigid rod:

- Finally we can use sx0, sy0 to formulate the constraint equations and simplify the lever principle.

```
model FixedTranslation
    Interfaces.Frame_a frame_a;
    Interfaces.Frame_b frame_b;
    parameter SI.Length r[2];
    SI.Distance r0[2];
    Real R[2,2];
```

equation
$R=\{\{\cos ($ frane_a. phi$), \sin ($ frane_a. $\mathrm{ph} i)\}$,

$r 0=R *$;
frame_a.x + r0[1] = frame_b.x;
frame_b.y + r0[2] = frame_b.y;
frame_a.phi = frame_b.phi;
frame_a.fx + frame_b.fx = 0;
frame_a.fy + frame_b.fy = 0;
frame_a.t + frame_b.t
+ r0*\{-frame_b.fy,frame_b.fx\} = 0;
end FixedTranslation

Prismatic Joint

The prismatic joint represents a rod with variable length:

- We can use the FixedTranslation model as a template.
- The final parameter e represents a normalized version of r;
- The variable s shall represent the length of the rod.
- Hence rO = R*e*s;

```
model Prismatic
    Interfaces.Frame_a frame_a;
    Interfaces.Frame_b frame_b;
    parameter SI.Distance r[2];
    final parameter SI.Distance e[2]
        = r/sqrt(r*r);
    SI.Distance s;
    SI.Distance r0[2];
    Real R[2,2];
```

equation
$R=\{\{\cos ($ frane_a. $p h i), \sin ($ frame_a. $p h i)\}$,
$\{-\sin ($ frame_a. phi) $\cos ($ franea.. phi) $\}\}$
$r 0=R^{*} e^{*}$;
frame_a.x + r0[1] = frame_b.x;
frame_b.y + r0[2] = frame_b.y;
frame_a.phi = frame_b.phi;
frame_a.fx + frame_b.fx = 0;
frame_a.fy + frame_b.fy = 0;
frame_a.t + frame_b.t
+ r0*\{-frame_b.fy,frame_b.fx\} = 0;
end Prismatic

Prismatic Joint

The prismatic joint represents a rod with variable length:

- Since we are relieving one positional constraint by adding the variable s, we have to add one force equation.
- No force can act in direction of the prismatic joint.
- This direction resovled in the inertial system is $\mathrm{R}^{*} \mathrm{e}$;

```
model Prismatic
    Interfaces.Frame_a frame_a;
    Interfaces.Frame_b frame_b;
    parameter SI.Distance r[2];
    final parameter SI.Distance e[2]
        = r/sqrt(r*r);
    SI.Distance s;
    SI.Distance r0[2];
    Real R[2,2];
equation
    R = {{cos(frame_a.phi), sin(frane_a.phi)},
        {-sin(framea.phi),cos(frame_a.phi)}}
    r0 = R*e*s;
    frame_a.x + r0[1] = frame_b.x;
    frame_b.y + r0[2] = frame_b.y;
    frame_a.phi = frame_b.phi;
    {frame_a.fx,frame_a.fy}*(R*e) = 0;
    frame_a.fx + frame_b.fx = 0;
    frame_a.fy + frame_b.fy = 0;
    frame_a.t + frame_b.t
    + r0*{-frame_b.fy,frame_b.fx} = 0;
end Prismatic
```


Prismatic Joint

Robotics and Mechatronics Centre

The prismatic joint represents a rod with variable length:

- As for the revolute joint, we would like to add the derivatives v and a .

```
model Prismatic
    Interfaces.Frame_a frame_a;
    Interfaces.Frame_b frame_b;
    parameter SI.Distance r[2];
    final parameter SI.Distance e[2]
        = r/sqrt(r*r);
    SI.Distance s;
    SI.Distance r0[2];
    Real R[2,2];
    SI.Velocity v;
    SI.Acceleration a;
equation
    v = der(s);
    a = der(v);
    R = {...};
    r0 = R*e*s;
    frame_a.x + r0[1] = frame_b.x;
    frame_b.y + r0[2] = frame_b.y;
    frame_a.phi = frame_b.phi;
    {frame_a.fx,frame_a.fy}*(R*e) = 0;
    frame_a.fx + frame_b.fx = 0;
    frame_a.fy + frame_b.fy = 0;
    frame_a.t + frame_b.t
    + r0*{-frame_b.fy,frame_b.fx} = 0;
end Prismatic
```


Damper

Let us conclude by modeling a damper:

- First of all, the damper does not impose any positional constraints.
- The damping force only acts alongside the damping direction.
- So the lever principle does not apply.

```
model Damper
    Interfaces.Frame_a frame_a;
    Interfaces.Frame_b frame_b;
```

equation
frame_a.fx = 0;
frame_a.fy = 0;
frame_a.t = 0;
frame_a.fx + frame_b.fx = 0;
frame_a.fy + frame_b.fy = 0;
frame_a.t + frame_b.t $=0$;
end Damper

Damper

Let us conclude by modeling a damper:

- The direction of the damping force is represented by the variable vector ro.

- We see that Modelica supports also vectors (similar to Matlab)

```
model Damper
    Interfaces.Frame_a frame_a;
    Interfaces.Frame_b frame_b;
    SI.Distance[2] r0;
equation
    frame_a.x + r0[1] = frame_b.x;
    frame_b.y + r0[2] = frame_b.y;
    frame_a.fx = 0;
    frame_a.fy = 0;
    frame_a.t = 0;
    frame_a.fx + frame_b.fx = 0;
    frame_a.fy + frame_b.fy = 0;
frame_a.t + frame_b.t = 0;
end Damper
```


Damper

Let us conclude by modeling a damper:

- The direction e0 is then the normalized version of ro.
- The built-in function contains work-around for the case that $\mathrm{rO}=0$.

```
model Damper
    Interfaces.Frame_a frame_a;
    Interfaces.Frame_b frame_b;
    SI.Length[2] r0;
    Real[2] e0;
equation
    frame_a.x + r0[1] = frame_b.x;
    frame_b.y + r0[2] = frame_b.y;
    e0= Modelica.Math.Vectors.normalize(r0);
    frame_a.fx = 0;
    frame_a.fy = 0;
    frame_a.t = 0;
    frame_a.fx + frame_b.fx = 0;
    frame_a.fy + frame_b.fy = 0;
    frame_a.t + frame_b.t = 0;
```

end Damper

Damper

Let us conclude by modeling a damper:

- v0 represents the relative velocity of the two frames.
- v is then the velocity in direction of the damper e0.
v = v_d*d0;

```
model Damper
    Interfaces.Frame_a frame_a;
    Interfaces.Frame_b frame_b;
    SI.Length[2] r0;
    Real[2] e0;
    SI.Velocity v0[2];
    SI.Velocity v;
equation
    frame_a.x + r0[1] = frame_b.x;
    frame_b.y + r0[2] = frame_b.y;
    e0= Modelica.Math.Vectors.normalize(r0);
    v0 = der(r0);
    \(\mathrm{v}=\mathrm{v} 0\) *e0;
    frame_a.fx = 0;
    frame_a.fy = 0;
    frame_a.t = 0;
    frame_a.fx + frame_b.fx = 0;
    frame_a.fy + frame_b.fy = 0;
    frame_a.t + frame_b.t = 0;
end Damper
```


Damper

Let us conclude by modeling a damper:

- f is the damping force acting in direction d0.
- It is proportional to the velocity. This is defined by the damping coefficient d:
$\mathrm{f}=-\mathrm{d}^{*} \mathrm{v}$;

```
model Damper
```

model Damper
Interfaces.Frame_a frame_a;
Interfaces.Frame_a frame_a;
Interfaces.Frame_b frame_b;
Interfaces.Frame_b frame_b;
parameter SI.DampingConstant d;
parameter SI.DampingConstant d;
SI.Length[2] r0;
SI.Length[2] r0;
Real[2] e0;
Real[2] e0;
SI.Velocity v0[2];
SI.Velocity v0[2];
SI.Velocity v;
SI.Velocity v;
SI.Force f;
SI.Force f;
equation
equation
frame_a.x + r0[1] = frame_b.x;
frame_a.x + r0[1] = frame_b.x;
frame_b.y + r0[2] = frame_b.y;
frame_b.y + r0[2] = frame_b.y;
e0= Modelica.Math.Vectors.normalize(s0);
e0= Modelica.Math.Vectors.normalize(s0);
v0 = der (r0);
v0 = der (r0);
v = v0*e0;
v = v0*e0;
f = -d*v;
f = -d*v;
frame_a.fx = e0[1] * f;
frame_a.fx = e0[1] * f;
frame_a.fy = e0[2] * f;
frame_a.fy = e0[2] * f;
frame_a.t = 0;
frame_a.t = 0;
frame_a.fx + frame_b.fx = 0;
frame_a.fx + frame_b.fx = 0;
frame_a.fy + frame_b.fy = 0;
frame_a.fy + frame_b.fy = 0;
frame_a.t + frame_b.t = 0;
frame_a.t + frame_b.t = 0;
end Damper;

```
end Damper;
```


Crane Crab

- Finally, we can model the crane crab:

Crane-Crab Results

Robotics and Mechatronics Centre

Crane Crab (Damped)

- Here a damped version:

Crane-Crab (Damped) Results

Robotics and Mechatronics Centre

Visualization

- Looking at plots of mechanical systems isn't that exciting.
- We would like to have a 3D animation of our system.
- Fortunately, Dymola provides an internal support for this.
- We can add elements from the MultiBody library in order to visualize our components.

Visualization: Fixed Translation

DLR
Robotics and Mechatronics Centre

Let us visualize the fixed translation:

- To this end, we have to add the general visualization component: MB.Visualizers.Advanced.Shape
- We have to convert our 2D-data into 3D-vectors.

```
model FixedTranslation
    Interfaces.Frame_a frame_a;
    Interfaces.Frame_b frame_b;
    parameter SI.Length r[2];
    SI.Distance r0[2];
    Real R[2,2];
    final parameter SI.Length l = sqrt(r*r);
    MB.Visualizers.Advanced.Shape cylinder(
        shapeType="cylinder",
        color={128,128,128},
        specularCoefficient=0.5,
        length=l, width=0.1, height=0.1,
        lengthDirection={r0/l,r0/l,0},
        widthDirection={0,0,1},
        r_shape={0,0,0},
        r={frame_a.x,frame_a.y,0},
        R=MB.Frames.nullRotation());
```


equation

```
end FixedTranslation
```


Visualization: Fixed Translation

Let us visualize the fixed translation:

- Since the animation shall only be optional, we make this component conditional.
- Conditional components can only be accessed in a very limited way. So use this tool moderately.

```
model FixedTranslation
    Interfaces.Frame_a frame_a;
    Interfaces.Frame_b frame_b;
    parameter SI.Length r[2];
    SI.Distance r0[2];
    Real R[2,2];
    final parameter SI.Length l = sqrt(r*r);
    parameter Boolean animation = true;
    MB.Visualizers.Advanced.Shape cylinder(
        shapeType="cylinder",
    color={128,128,128},
    specularCoefficient=0.5,
    length=l, width=0.1, height=0.1,
    lengthDirection={sx0/l,sy0/l,0},
    widthDirection={0,0,1},
    r_shape={0,0,0},
    r={frame_a.x,frame_a.y,0},
    R=MB.Frames.nullRotation())
        if animation;
equation
end FixedTranslation
```


Double Pendulum

- A seemingly simple system is the double pendulum

- Let us look at the angle of the second revolute joint.

Double Pendulum

Robotics and Mechatronics Centre

Angle of the small pendulum. Simulated by DASSL with precision 1e-6

Double Pendulum

Robotics and Mechatronics Centre

Angle of the small pendulum. Simulated by DASSL with precision 1e-7

Double Pendulum

Robotics and Mechatronics Centre

Angle of the small pendulum. Simulated by DASSL with precision 1e-8

Double Pendulum

Angle of the small pendulum. Simulated by DASSL with precision 1e-9

Double Pendulum

Robotics and Mechatronics Centre

Angle of the small pendulum. Simulated by DASSL with precision 1e-10

Double Pendulum

- The simulation does not converge no matter what precision we apply. We have no $f^{*} \#$? ing clue what the state of our system is at $t=100$.
- The double pendulum is a chaotic system.
- The upright resting position of the second pendulum represents a bifurcation point.
- During simulation, the system will almost inevitable come close to this bifurcation point. Hence the system is extremely sensitive to its initial state.
- Too sensitive to enable any kind of reliable prediction.

Summary

Robotics and Mechatronics Centre

- We designed the connector of a planar-mechanical library
- We designed the first component.
- We developed component by starting from a neutral pseudocomponent.
- We learned about arrays/vectors in Dymola.
- We assembled the crane crab and a double pendulum.
- We were confronted with a chaotic system.

Questions?

