

Decomposition into components

• The crane-crab has two degrees of freedom: The horizontal movement of the carriage wagon and the load revolting like a pendulum.

ТШ

Robotics and Mechatronics Centre

d de la

DLR

- The carriage and the load possess mass and an inertia
- The cable has given length.

ТШ **Decomposition into components** Robotics and Mechatronics Centre • ...and the corresponding

~			
Conr	necto	r Varia	bles

æ

DLR

- From 1D-mechanics, we learned that the we should choose force and torque as flow-variables and position and angle as potential variables.
- Planar mechanics combine three 1D-subsytems. Hence the following connector design seems natural.

Potential variables	Flow variables	
x (horizontal position)	f _x (horizontal force)	
y (vertical position)	f _v (vertical force)	
arphi (orientation angle)	τ (torque)	
	© Dirk Zimmer, November 2014, Slide 1	

Double Pendulum

- The simulation does not converge no matter what precision we apply. We have no f*#?ing clue what the state of our system is at t = 100.
- The double pendulum is a chaotic system.
- The upright resting position of the second pendulum represents a bifurcation point.
- During simulation, the system will almost inevitable come close to this bifurcation point. Hence the system is extremely sensitive to its initial state.
- Too sensitive to enable any kind of reliable prediction.

© Dirk Zimmer, November 2014, Slide 5

