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• So far, we have only cared about the equations that describe the 
dynamic behavior of the system. 

 

• But we need to define a set of initial equations too. 

 

• Whereas the dynamic equations can be generically formulated in a way 
that the components can be almost arbitrarily connected, this is 
unfortunately not the case for the initial equations. 

 

• In general, they need to be manually set up for each specific system. 
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• However, what we can do is to put the modeler into a position so that he 
can set up the initial state of the system in a convenient way. 

 

• To this end, we create parameterized initial equations for some of our 
components. 

 

• Usually, the joints are a good place to set the initial equations of a 
system. 
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Let us add initial equations to the 
revolute joint: 

 

 

 

• First we add parameters for the 
initial values. 

 

• Then we can add the 
correspondent initial equations. 

 

 

 

 
  

 

 

 

 

 

 

 

 

 

 

 

Initializing the Revolute Joint 

model Revolute 
  Interfaces.Frame_a frame_a; 
  Interfaces.Frame_a frame_a; 
  SI.Angle phi 
  SI.AngularVelocity w; 
  SI.AngularAcceleration z; 
 
  parameter SI.Angle phi_start = 0; 
  parameter SI.AngularVelocity w_start=0; 
 
 
 
initial equation 
  phi = phi_start; 
  w = w_start; 
 
equation  
  frame_a.phi + phi = frame_b.phi; 
  w = der(phi); 
  z = der(w);  
  frame_a.x = frame_b.x; 
  frame_a.y = frame_b.y; 
  [ … ] 
end Revolute 
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Let us add initial equations to the 
revolute joint: 

 

 

 

• But it is not clear, if the modeler 
really wants to state such 
equations. 

 

• Thus, we put them in conditional 
form. 

 

 

 

 
  

 

 

 

 

 

 

 

 

 

 

 

Initializing the Revolute Joint 

model Revolute 
  Interfaces.Frame_a frame_a; 
  Interfaces.Frame_a frame_a; 
  SI.Angle phi 
  SI.AngularVelocity w; 
  SI.AngularAcceleration z; 
  parameter SI.Angle phi_start = 0; 
  parameter SI.AngularVelocity w_start=0; 
  parameter Boolean initialize = false; 
 
initial equation 
  if initialize then 
    phi = phi_start; 
    w = w_start; 
  end if; 
 
equation  
  frame_a.phi + phi = frame_b.phi; 
  w = der(phi); 
  z = der(w);  
  frame_a.x = frame_b.x; 
  frame_a.y = frame_b.y; 
  [ … ] 
end Revolute 
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• In this way, we create conditional initial equation sections for a number 
of components. 

 

 

 

 

• For each of these component we may now use the parameter menu to 
set the initial values. 

 

• This way of providing a functionality for initialization is still rudimentary. 
Look at the MulitBody library to see a more elaborate version of it. 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

Initialization 
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• Let us model a piston engine: 

 

 

 

 

 

 

 

• Although the model has 4 joint elements, it has only 1 degree of 
freedom. So it is enough to initialize one of the four joints. 

 

  

 

 

 

 

 

 

 

 

Initializing a Piston Engine 
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• Model Diagram: 
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• Model Diagram: 
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• Let us model a piston engine: 

 

 

 

 

 

 

 

• If we initialize the position of the piston, two possible solutions exist. 

• We have to solve a non-linear system of equations. 

 

  

 

 

 

 

 

 

 

 

Initializing a Piston Engine 
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• Let us model a piston engine: 

 

 

 

 

 

 

 

• The same holds for the initialization via the disc rotation angle. 

 

  

 

 

 

 

 

 

 

 

Initializing a Piston Engine 
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• Let us model a piston engine: 

 

 

 

 

 

 

 

• However, if we attempt to initialize both in order to clarify the solution, 
we get an overdetermined system of equations. 

 

  

 

 

 

 

 

 

 

 

Initializing a Piston Engine 
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• Dymola will solve the non-linear equation system by an iterative solver. 

• Which solution it will find (if any) depends on the start values of the 
iterative solver. 

• It is possible to suggest start values without enforcing an initialization 
constraint by using the attributes of Real variables. 

 

• Real x(start=10,fixed = false)  
means that 10 is a suggested start value for an iterative solver. 

 

• Real x(start=10,fixed = true) 
means that 10 is the initial value. 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

Providing Start Values 
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• Let us model a piston engine: 

 

 

 

 

 

 

• So I could try to initialize one joint with fixed=true and the other joint 
with fixed = false; 

• This will do the job. Nevertheless be aware that there is no guarantee 
that we will get the right solution. 

 

  

 

 

 

 

 

 

 

 

Initializing a Piston Engine 
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• The model of the piston engine represented an example that contained 
fewer degrees of freedom than the number of joint elements would 
suggest. 

 

• Such systems contain a kinematic loop. 

 

• Here is an example where the loop is more evident. 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

Kinematic Loops 
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• Here is an example where the actual loop is more evident. 

 

 

 

Kinematic Loops: Example 



© Dirk Zimmer, November 2014, Slide 17 

Robotics and Mechatronics Centre 

+ 

• Here is an example where the actual loop is more evident. 

 

 

 

Kinematic Loops: Example 
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• Here is an example where the actual loop is more evident. 

 

 

 

Kinematic Loops: Example 
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• How do we determine the degrees of freedom? 
 

• Each joint adds one degree of freedom. There are 5 joints, so there are 5 
degrees of freedom.  
 

• The closure of a kinematic loop, imposes 3 holonomic constraints.  
x1 = x2;   
y1= y2;   
φ1= φ2; 
 

• Hence, each loop decreases the degrees of freedom by 3 (in planar 
mechanical systems) 
 

• In our example, 5-3 = 2degrees of freedom remain. 
 

 
 

 
 

Kinematic Loops: DOF 
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• Here is an example where the actual loop is more evident. 

 

 

 

Kinematic Loops: Initialization 
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• When there remain only 2 degrees of freedom, by which state variables 
are they represented? 

• The attached pendulum has its usual states. The angle φ and the angular 
velocity ω of revolute3 

• But which states represent the state of the loop? Here is what Dymola 
tells you in the translation log of the model: 
 

 

Kinematic Loops: States 

There are 2 sets of  
dynamic state selection. 
 
From set 1 there is 1 state to 
 be selected from: 
 
  revolute.phi 
  revolute2.phi 
  springDamper.s_rel 
 revolute3.wspringDamper.v_rel 

 
 
 
From set 2 there is 1 state to
 be selected from: 
 
  body.w 
  revolute2.w 
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• What is dynamic state-selection? 

 

• After all, what does it mean to select states? 

 

• All joints formulate differential equations of their motion, but only a few 
of these differential equations seem to end up in the explicit state-space 
form. 

 F(xp,dxp/dt,u,t) = 0    dx/dt = f(x,u,t) 

  x is only a subset of xp 

 

• There seems to be an important subject in the translation of models that 
we have missed so far. 

 

 

Dynamic State Selection 
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• So far we have assumed, that every variable that occurred as time-
derivative, represents a state and is assumed to  be known: 
 

• Example in an electric Capacitor:  
i = C*der(u)  u represents a state and is known. 
 

• However, this holds not always true. Let us take a look at a simple 
counter example: 

States and Derivatives 

G

R=50

R
C

=1e-3

C
2

V0=10

+
-

C
=2e-3

C
1



© Dirk Zimmer, November 2014, Slide 24 

Robotics and Mechatronics Centre 

+ 

• Let us model this circuit by the following set of  equations: 
 

 uR = R*i 

 iC1 = C1 * duC1/dt 

 iC2 = C2 * duC2/dt 

 vG = 0; 

 vS = 10;  

 vC = vG + uC1 

   vC = vG + uC2 

  vC = vS – uR 

 iC1 + iC2 = i 

 

States and Derivatives 
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• Let us model this circuit by the following set of  equations: 
 

 uR = R*i 

 iC1 = C1 * duC1/dt 

 iC2 = C2 * duC2/dt 

 vG = 0; 

 vS = 10;  

 vC = vG + uC1 

   vC = vG + uC2 

  vC = vS – uR 

 iC1 + iC2 = i 

 

States and Derivatives 
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 uR = R*i 

 iC1 = C1 * duC1/dt 

 iC2 = C2 * duC2/dt 

 vG = 0; 

 vS = 10;  

 vC = vG + uC1 

   vC = vG + uC2 

  vC = vS – uR 

 iC1 + iC2 = i 

 

States and Derivatives 

• As usual, we assume uC1 and uC2 to be 
known. 

 

• Let us start with forward causalization. 
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 vG := 0; 

 vS := 10;  

 vC := vG + uC1 

   Residual = vG + uC2 - vC 

 uR = R*i 

 iC1 = C1*duC1/dt 

 iC2 = C2*duC2/dt 

 vC = vS – uR 

 iC1 + iC2 = i 

 

Dynamic State Selection 

• As usual, we assume uC1 and uC2 to be 
known. 

 

• Let us start with forward causalization. 

 

• A residual equation is generated, but there 
is no iteration variable. The system seems to 
be overdetermined. We encounter a 
structural singularity. 
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 vG := 0; 

 vS := 10;  

 vC := vG + uC1 

   Residual = vG + uC2 - vC 

 uR = R*i 

 iC1 = C1*duC1/dt 

 iC2 = C2*duC2/dt 

 vC = vS – uR 

 iC1 + iC2 = i 

 

Pantelides: Example 

• In order to remove this structural 
singularity, we have to apply the Pantelides 
Algorithm: 
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 vG := 0; 

 vS := 10;  

 vC := vG + uC1 

   Residual = vG + uC2 - vC 

 uR = R*i 

 iC1 = C1*duC1/dt 

 iC2 = C2*duC2/dt 

 vC = vS – uR 

 iC1 + iC2 = i 

 

Pantelides: Example 

• In order to remove this structural 
singularity, we have to apply the Pantelides 
Algorithm: 

 

• To this end, we assume one of the affected 
states to be unknown (we gain one 
unknown) 
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 vG := 0; 

 vS := 10;  

 vC := vG + uC1 

   0 = vG + uC2 – vC 

 d0/dt = d(vG + uC2 – vC)/dt 

 uR = R*i 

 iC1 = C1*duC1/dt 

 iC2 = C2*duC2/dt 

 vC = vS – uR 

 iC1 + iC2 = i 

 

Pantelides: Example 

• In order to remove this structural 
singularity, we have to apply the Pantelides 
Algorithm: 

 

• To this end, we assume one of the affected 
states (here: uC2) to be unknown (we gain 
one unknown) 

 

• And add as additional equation the time 
derivative of the constraint. 
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 vG := 0; 

 vS := 10;  

 vC := vG + uC1 

   0 = vG + uC2 – vC 

 d0/dt = d(vG + uC2 – vC)/dt 

 uR = R*i 

 iC1 = C1*duC1/dt 

 iC2 = C2*duC2/dt 

 vC = vS – uR 

 iC1 + iC2 = i 

 

Pantelides: Example 

• The differentiated equation 
  

  d0/dt = d(vG + uC2 – vC)/dt  
 

 can be transformed to… 

  0 = dvG/dt + duC2/dt – dvC/dt  
 

• The derivatives dvG/dt and dvC/dt are yet 
unknown. We have to differentiate further 
equations. 
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 vG := 0; 
 dvG/dt := 0; 
 vS := 10;  
 vC := vG + uC1 

 dvC/dt = dvG/dt + duC1/dt 
   0 = vG + uC2 – vC 

 0 = dvG/dt + duC2/dt – dvC/dt 
 uR = R*i 
 iC1 = C1*duC1/dt 
 iC2 = C2*duC2/dt 
 vC = vS – uR 

 iC1 + iC2 = i 

 

Pantelides: Example 

• Adding an equation in differentiated form 
may require further derivation of further 
variables and equations 

 

• Here, we had two add two further variables 
(dvG/dt, dvC/dt) and two equations. 

 

• Now we can continue to causalize the 
system… 
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 vG := 0; 
 dvG/dt := 0; 
 vS := 10;  
 vC := vG + uC1 

  uC2 :=  vC – vG 

  uR := vS–  vC 

  i := uR/R 

 0 = dvG/dt + duC2/dt – dvC/dt 

 dvC/dt = dvG/dt + duC1/dt 
 iC1 = C1*duC1/dt 
 iC2 = C2*duC2/dt 
 iC1 + iC2 = i 

 

Pantelides: Example 

• There remain 5 equations non-causalized. 
Evidently, there is an algebraic loop. 

• This loop represents the division of current 
among the two capacitors. 

• In order to break the loop, we select iC1 as 
tearing variable and causalize. 
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 vG := 0; 
 dvG/dt := 0; 
 vS := 10;  
 vC := vG + uC1 

  uC2 :=  vC – vG 

  uR := vS–  vC 

  i := uR/R 

 iC1 := iteration variable 
 duC1/dt := iC1/C1 
 dvC/dt := dvG/dt + duC1/dt 
 iC2 := i – iC1   
  duC2/dt := iC2/C2 
 0 = dvG/dt + duC2/dt – dvC/dt 

  

Pantelides: Example 

• There remain 5 equations non-causalized. 
Evidently, there is an algebraic loop. 

• This loop represents the division of current 
among the two capacitors. 

• In order to break the loop, we select iC1 as 
tearing variable and causalize. 

• Finally, we get one residual equation. 

• Structural singularities often generate 
algebraic loops. 
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• Initially, all potential state-variables are assumed to be known. 
 

• For each constraint equation between potential state-variables, we have 
to de-select one state (assuming it to be unknown): we gain one 
unknown. 
 

• Then, we differentiate the constraint equation. To this end, we need 
algorithmic (symbolic) differentiation: we gain one equation. 
 

• The differentiation may involve further equations and variables. 
 

• Finally, algebraic loops are likely to result. 

Pantelides: Summary 
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• Let us illustrate the ideas behind the Pantelides Algorithm: 

 

 

 

Pantelides: Illustration 

∫ ∫ 

a 

da/dt db/dt 

b 

∫ 

a 

da/dt db/dt 

b 
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• Here, we have chosen a as state-variable. But we could choose b as well. 

 

 

 

Pantelides: Illustration 

∫ ∫ 

a 

da/dt db/dt 

b 

∫ 

a 

da/dt db/dt 

b 
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• Does it matter, if we choose a or b as state variable? 

 

• If the constraint between a and b is linear (with constant coefficients), 
it does not matter. 

 

• But otherwise an inadequate state-selection can lead to numerical 
singularities during the simulation. 

State Selection 
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• So what is the situation like for the kinematic loop example? 

• Obviously, the constraints are highly non-linear. 

• Dymola tells us there is a non-linear system of size 20 that can be 
reduced to 3 iteration variables. 

 

State Selection 
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• If Dymola would just blindly choose s and v of the prismatic joint to be 
state-variables a singularity could occur. 

 

 

 

 

• When the prismatic joint is stretched to the maximum length: 
v = 0. 

• However, the loop is not necessarily at rest! We just lost all information 
about the velocity of the loop! 

• If we choose, phi and w of the wall revolute-joint to be the states, the 
problem disappears. But Dymola cannot know this. This is expert 
knowledge. 

 

Singularities 
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• Due to the non-linear constraints, Dymola cannot eliminate potential 
state-variables.  

• Instead, a set of redundant state-variables is chosen and the best subset 
is chosen dynamically during the simulation. 

• However, this is demanding and potentially time-consuming. 

• Can’t we help Dymola? 

Dynamic State Selection 



© Dirk Zimmer, November 2014, Slide 42 

Robotics and Mechatronics Centre 

+ 

• In Modelica there is the StateSelect Attribute. 
 

• We can determine it for any Real variable. Example:   
 SI.Angle phi(stateSelect=StateSelect.always) 

 

• There are five different levels available for state selection: 
StateSelect.always 
StateSelect.prefer 
StateSelect.default 
StateSelect.avoid 
StateSelect.never 
 

• StateSelect.prefer is used to show that this a state-variable that 
shall be taken in case of linear constraints. 

• StateSelect.always is used to show that this a state-variable that 
shall be taken even in case of non-linear constraints 

Manual State-Selection 
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• We can apply the StateSelect Attribute in the modifier: 
    

 
 
 
 
 
 
 
 

• Now, there is no dynamic state-selection anymore.  

• Also the non-linear system of equations could be further simplified. 

• Simulation is much faster. 

Manual State-Selection 

 
  Joints.Revolute revolute( 
        phi(stateSelect=StateSelect.always),  
        w(stateSelect=StateSelect.always)); 
 
  Joints.Revolute revolute1; 
 
  Joints.Revolute revolute2; 
 
  Joints.Revolute revolute3( 
    initialize=true, 
    w_start=0, 
    phi_start=0); 
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It is more convenient when the state 
selection is integrated into the 
model: 

 

 

 

• Hence we add a Boolean 
parameter “enforceStates”. 

 

• And couple it with the attribute. 

 

 

 
  

 

 

 

 

 

 

 

 

 

 

 

Enforcing States for the Revolute  

model Revolute 
  Interfaces.Frame_a frame_a; 
  Interfaces.Frame_a frame_a; 
  SI.Angle phi (stateSelect =  
  if enforceStates then StateSelect.always 
  else StateSelect.prefer);  
  SI.AngularVelocity w(stateSelect =  
  if enforceStates then StateSelect.always 
  else StateSelect.prefer); 
  SI.AngularAcceleration z; 
  parameter SI.Angle phi_start = 0; 
  parameter SI.AngularVelocity w_start=0; 
  parameter Boolean initialize = false; 
  parameter Boolean enforceStates = false; 
 
[ … ] 
equation  
  frame_a.phi + phi = frame_b.phi; 
  w = der(phi); 
  z = der(w);  
  frame_a.x = frame_b.x; 
  frame_a.y = frame_b.y; 
  [ … ] 
end Revolute 
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• The index describes the level of difficulty to transform a given system 
from implicit DAE-form into explicit ODE-form. 

 F(xp,dxp/dt,u,t) = 0    dx/dt = f(x,u,t) 
 

• An index-0 system represents a system that can be brought into ODE-
form simply by permuting its equations. 
 

• The differential index represents the maximum number a variable needs 
to be differentiated in order to retrieve an index-0 system. 
 

• The perturbation index is equal to the differential index if the system 
contains no algebraic loops. Otherwise it is larger by one. 
 

• Typically, the term index refers to the perturbation index. 

Definition: Index 
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• Differential Index: 0 

• Perturbation Index: 0 

 

 

 

 

 

 

 

 

Example: Index 
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• Differential Index: 0 

• Perturbation Index: 1 

 

 

 

 

 

Example: Index 

G

R
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RI0=I

R
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R
2

The two parallel resistor create 
an algebraic loop for the 
division of current. 
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• Differential Index: 1 

• Perturbation Index: 1 

 

 

 

 

 

 

 

 

Example: Index 

G

R
=R

R C
=C

C

constantVolta?

+
-

The voltage source 
determines the voltage 
at the capacitor. 

 

The voltage must be 
differentiated in order 
to determine the 
current through the 
capacitor. 
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• Differential Index: 1 

• Perturbation Index: 2 

 

 

 

 

 

 

 

 

Example: Index 

G

I0=I

C
=C

CC
=C

C
1

Both voltages of the capacitors 
are equal. Only one differential 
equation is used for time-
integration. The system needs 
to be differentiated once. 

The two parallel capacitors 
create an algebraic loop for the 
division of current. 
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• Set up the equations for each circuit and transform them to ODE-Form 
Apply Tearing-Algorithm and Pantelides if necessary  

 

 

 

 

 

 

 

 

Exercise 
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• Beware! Certain system may require multiple differentiations… 

 

 

 

 

Pantelides: Higher Index 

∫ ∫

a

da/dt db/dt

b

∫ ∫

d2a
dt2

d2b
dt2

∫

a

da/dt db/dt

b

∫ ∫

d2a
dt2

d2b
dt2

∫

a

da/dt db/dt

b

∫

d2a
dt2

d2b
dt2
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• Multiple differentiations lead to a higher differential index. 

 

• Systems with a perturbation index of 3 and higher are called: 
higher-index systems 

 

• Most mechanical systems are higher-index systems. 

Pantelides: Higher Index 
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