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In this lecture, we are going we study the design of semi-empirical wheel 
models and their implementation in Modelica. 
 

• Motivation behind semi-empirical models  
 

• Stepwise modeling approach: Wheel and tyre models 
– Level 1: ideally rolling wheel 
– Level 2: slick-tyre wheel (Dry-Friction) 
– Level 3: tread-tyre wheel (Slip-Based Characteristic) 

 
• Here, we model only in planar mechanics 
 
 

Outline 
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• In our planar-mechanical world, the wheel shall roll on the whole xy-
plane 

 

 

 

 

 

• The angle phi describes the orientation (driving direction) of the wheel. 

• The wheel rotation around the axis is described by an extra rotational 
flange. 

• The wheel cannot tilt. It is always in upright position. So the third angle is 
neglected. 

 

Wheels 

x 

y 
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• The actual wheel can be decomposed into three components: 

 

 

 

 

• A one-dimensional inertia that models the inertia of the wheel around 
the wheel axis. 

• A two dimensional body-component that models the mass and inertia 
with respect to the planar domain. 

• A “wheel joint” that implements the non-holonomic constraints of 
motion. 

• Only the wheel joint needs to be modeled. 
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• The actual wheel can be decomposed into three components: 

 

 

 

 

 

• The wheel joint establishes non-holonomic constraints on the level of 
velocity. 

– The lateral velocity is zero 

– The longitudinal velocity is proportional to the wheels rotation so 
that the velocity of the virtual contact point is zero. 
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Fundamental assumptions 
 

• The wheel is treated as a freely moving body. 
 

• The fundamental equations of motion apply. 
 

• The contact-forces result out of the 
 constraint equations.  
 

Level 1: Ideal rolling 
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Let us model a simple version of the 
wheel joint. 

 

 

 

 

• Let us assume that the driving 
direction is the x-axis and that 
the orientation phi is fixed to 0°. 

 

 

 

 

 
  

 

 

 

 

 

 

 

 

 

 

 

Ideal Rolling Wheel 

model IdealWheelJoint 
  Interfaces.Frame_a frame_a; 
  Rotational.Interfaces.Flange_a flange_a; 
  parameter SI.Length radius; 
 
  SI.AngularVelocity w_roll; 
  SI.Velocity v[2], v_long; 
  SI.Force f_long; 
 
equation 
  
  v = der({frame_a.x, frame_a.y}); 
  w_roll = der(flange_a.phi); 
   
  v_long = radius*w_roll; 
 
  v_long = v[1]; 
  v[2] = 0; 
 
  -f_long*R = flange_a.tau; 
  frame_a.phi = 0; 
  frame_a.fx= f_long; 
 
end IdealWheelJoint; 

name
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Let us model a simple version of the 
wheel joint. 

 

 

 

 

• Retrieving the velocities 

• Projecting the driving velocity 

• Non-holonomic constraints 

• Transmission of  force 

 

 

 

 

 
  

 

 

 

 

 

 

 

 

 

 

 

Ideal Rolling Wheel 

model IdealWheelJoint 
  Interfaces.Frame_a frame_a; 
  Rotational.Interfaces.Flange_a flange_a; 
  parameter SI.Length radius; 
 
  SI.AngularVelocity w_roll; 
  SI.Velocity v[2], v_long; 
  SI.Force f_long; 
 
equation  
 
  v = der({frame_a.x, frame_a.y}); 
  w_roll = der(flange_a.phi); 
   
  v_long = radius*w_roll; 
 
  v_long = v[1]; 
  v[2] = 0; 
 
  -f_long*R = flange_a.tau; 
  frame_a.phi = 0; 
  frame_a.fx= f_long; 
 
end IdealWheelJoint; 

name
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Let us model a simple version of the 
wheel joint. 

 

 

 

 

• Now let us parameterize the 
driving direction by sx and sy 

• We project the velocity from 1D 
into 2D 

• We project the force from 2D into 
1D. 

Ideal Rolling Wheel 

model IdealWheelJoint 
  Interfaces.Frame_a frame_a; 
  Rotational.Interfaces.Flange_a flange_a; 
  parameter SI.Length radius; 
  parameter SI.Length r[2]; 
  final parameter SI.Length l = sqrt(r*r); 
  final parameter Real e[2] =  r/l; 
  SI.AngularVelocity w_roll; 
  SI.Velocity v[2], v_long; 
  SI.Force f_long; 
 
equation  
  R = {{cos(frame_a.phi), sin(frame_a.phi)},  
      {-sin(frame_a.phi),cos(frame_a.phi)}}; 
  e0 = R*e; 
 
  v = der({frame_a.x,frame_a.y}); 
  v = v_long*e0; 
  w_roll = der(flange_a.phi); 
  v_long = radius*w_roll; 
  -f_long*radius = flange_a.tau; 
  frame_a.t = 0; 
  {frame_a.fx, frame_a.fy}*e0 = f_long; 
end IdealWheelJoint; 

name



© Dirk Zimmer, November 2014, Slide 11 

Robotics and Mechatronics Centre 

+ 

Let us model a simple version of the 
wheel joint. 

 

 

 

 

• Now we remove the holonomic 
constraint on the angle. 

• We know this procedure from the 
prismatic joint. 

Ideal Rolling Wheel 

model IdealWheelJoint 
  Interfaces.Frame_a frame_a; 
  Rotational.Interfaces.Flange_a flange_a; 
  parameter SI.Length radius; 
  parameter SI.Length r[2]; 
  final parameter SI.Length l = sqrt(r*r); 
  final parameter Real e[2] =  r/l; 
  SI.AngularVelocity w_roll; 
  SI.Velocity v[2], v_long; 
  SI.Force f_long; 
 
equation  
  R = {{cos(frame_a.phi), sin(frame_a.phi)},  
      {-sin(frame_a.phi),cos(frame_a.phi)}}; 
  e0 = R*e; 
 
  v = der({frame_a.x,frame_a.y}); 
  v = v_long*e0; 
  w_roll = der(flange_a.phi); 
  v_long = radius*w_roll; 
  -f_long*radius = flange_a.tau; 
  frame_a.t = 0; 
  {frame_a.fx, frame_a.fy}*e0 = f_long; 
end IdealWheelJoint; 
 

name
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• We can use the wheel joints to 
construct a single-track model of a 
vehicle. 

 

• This model has simply two masses: 
One representing the rear frame 
and one representing the front part. 

 

• The wheels have no separate inertia. 
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+ Single Track Model: Results 
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+ Level 2: Wheel with Dry Friction 

 
• The model of a rigid wheel resembles roughly a train-wheel. 

 
• We maintain the holonomic constraint: The wheel is bounded to the track-

plane (that is anyway the case in planar mechanics) 
 

• The two non-holonomic constraints are released: slippage is allowed. 
 

• The contact forces become  
now a function of the  
slip-velocity: 
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Now let us implement a rigid wheel 
with the dry-friction law: 

 

 

 

Let us determine the parameters: 

• Coefficients for stiction and 
friction (common for lateral and 
longitudinal direction) 

• Normal Force 

• Adhesive velocity, Sliding 
Velocity (for regularization 
purposes) 

 

 

 

 

 

 
  

 

 

 

 

 

 

 

 

 

 

 

Wheel with Dry Friction 

model IdealWheelJoint 
 
 
  parameter SI.Force N; 
 
  parameter SI.Velocity vAdhesion; 
  parameter SI.Velocity vSlide; 
 
  parameter Real mu_A ; 
  parameter Real mu_S; 
 
 
 
 
 […] 
 
 
   
 
equation  
  […] 
 
 
end IdealWheelJoint; 

name
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Now let us implement a rigid wheel 
with the dry-friction law: 

 

 

 

1. First, we determine the 
longitudinal and lateral 
velocities 

2. Then we compute the slip 
velocities 

3. Given the slip-velocities, we can 
compute the force 

4. This projected on the frame-
forces 

 

 

 

 

 

 
  

 

 

 

 

 

 

 

 

 

 

 

Wheel with Dry Friction 

model IdealWheelJoint 
  […] 
 
equation  
  v_long = v*e0; 
  v_lat = -v[1]*e0[2] + v[2]*e0[1]; 
 
  v_slip_lat = v_lat - 0; 
  v_slip_long = v_long - radius*w_roll; 
  v_slip = sqrt(v_slip_long^2 +  
                v_slip_lat^2)+0.0001; 
 
  -f_long*R = flange_a.tau; 
  frame_a.t = 0; 
  f = N*TripleS_Func(vAdhesion, 
                 vSlide,mu_A,mu_S,v_slip); 
  f_long =f*v_slip_long/v_slip; 
  f_lat  =f*v_slip_lat/v_slip; 
 
  f_long = {frame_a.fx,frame_a.fy}*e0; 
  f_lat = {frame_a.fy,-frame_a.fx}*e0; 
 
  […] 
end IdealWheelJoint; 

name
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• In order to test our dry-friction 
wheel model, let us build the 
following virtual test rig. 

 

• The wheel is forced on a circular 
path by a mechanic construction. 

 

• The ideal wheel would turn on a 
circle with constant radius in ever 
increasing speed. 

 

• What does the wheel with the dry-
friction model? 

 

 

 

 

 

Dry Friction: Test Model 
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+ Dry Friction: Trajectory 
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+ Dry Friction: Trajectory 

Sliding  
Friction 
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+ Dry Friction: Trajectory 

• The wheel behaves 
approximately like an 
ideal rolling wheel as long 
as the tire adheres to the 
surface. 
 

• There is only a small 
lateral deflection 
 

• When the speed becomes 
to large, the wheel enters 
sliding friction until the 
radius is wide enough to 
move the lateral force 
below the threshold 
value. 
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+ Level 3: Slip-Based Wheel 

• The tread elements are temporarily deflected in the tread shuffle. The 
force is transmitted according to this deflection. 
 

• To describe the force transmission, the concept of “slip” is widely used. 
 

• The slip is defined to be the quotient 
of the slip-velocity and the roll- 
velocity and represents (roughly  
speaking) the fraction of wheel spin. 
 

• The slip is a dimensionless size  
that is proportional to the mean  
deflection of the tread elements.  
(Presuming the tread elements adhere) 
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+ Level 4: Slip Characteristics 

• Dependence of the transmission forces on the slip. 
 
 
 
 
 
 
 
 
 

• Unfortunately, the slip turns out to be inappropriate for low 
rolling-velocities. Thus, its explicit computation is avoided. 
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+ Level 4: Slip Characteristics 

 
 

the curve reaches a singular point for vRoll->0 

Here, the slip-characteristics are 
displayed with respect to the rolling- 
velocity and the slip-velocity 
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+ Level 4: Slip Characteristics 

 
 

But, we still have our dry-friction model. 
It represents an appropriate solution for 
low rolling velocities. 
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+ Level 4: Slip Characteristics 

 
 

So… let‘s combine our two models: 

Finally, the computation of the slip is avoided and the 
model is stable and accurate for all rolling-velocities. 
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Now let us implement a slip-based 
wheel: 

 

 

 
 

The only thing we need to do is: 

• make vAdhesion and vSlip 
proportional to the rolling speed. 

• Provide minimum values in order 
to avoid a singularity at w = 0 

• Furthermore, we make  the 
normal load dynamic.  
(we need this later on) 

 

 

 

 

 
  

 

 

 

 

 

 

 

 

 

 

 

Slip Based Wheel 

model IdealWheelJoint 
 
  RealInput dynamicLoad(unit="N") 
  parameter SI.Velocity vAdhesion_min ; 
  parameter SI.Velocity vSlide_min ; 
  parameter Real sAdhesion ; 
  parameter Real sSlide; 
  […] 
 
equation  
  […] 
 
  vAdhesion = max( 
    sAdhesion*abs(radius*w_roll), 
    vAdhesion_min 
  ); 
  vSlide = max( 
    sSlide*abs(radius*w_roll), 
    vSlide_min 
  ); 
  fN = max(0, N+dynamicLoad); 
  f = fN*TripleS_Func(vAdhesion,vSlide, 
                      mu_A,mu_S,v_slip); 
end IdealWheelJoint; 

name
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Now let us implement a slip-based 
wheel: 

 

 

 
 

Still the model is very simple 

• No camber influence 

• No self-alignment 

• No bore torque 

• No dynamic tire behavior. 

• Etc.. 
 
 

 

 

 

 

 
  

 

 

 

 

 

 

 

 

 

 

 

Slip Based Wheel 

model IdealWheelJoint 
 
  RealInput dynamicLoad(unit="N") 
  parameter SI.Velocity vAdhesion_min ; 
  parameter SI.Velocity vSlide_min ; 
  parameter Real sAdhesion ; 
  parameter Real sSlide; 
 […] 
 
equation  
  […] 
 
  vAdhesion = max( 
    sAdhesion*abs(radius*w_roll), 
    vAdhesion_min 
  ); 
  vSlide = max( 
    sSlide*abs(radius*w_roll), 
    vSlide_min 
  ); 
  fN = max(0, N+dynamicLoad); 
  f = fN*TripleS_Func(vAdhesion,vSlide, 
                      mu_A,mu_S,v_slip); 
end IdealWheelJoint; 

name
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+ Slip Based: Trajectory 

• The increasing speeds 
leads enables a higher 
lateral slip-velocity. 
 

• Hence, the trajectory 
resembles a spiral. 
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+ Bonus: Influence of Camber 
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+ Bonus: Influence of Bore-Torque… 

 
 
 
 



© Dirk Zimmer, November 2014, Slide 31 

Robotics and Mechatronics Centre 

+ Bonus: Influence of Self-Alignment 
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+ Bonus: Tyre Deformation 

• Longitudinal and lateral deflections are 
modeled by virtual spring-damper 
systems. 
 

• The velocity of the deformation 
influences the slip-velocity. 
 

• The shift of the contact-point leads to 
additional torques. 
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+ Bonus: Tyre Deformation 
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