Virtual Physics Equation-Based Modeling

TUM, November 18, 2014

Wheels and Tires: Realization in Planar Mechanics

German Aerospace Center (DLR), Robotics and Mechatronics Centre

Outline

In this lecture, we are going we study the design of semi-empirical wheel models and their implementation in Modelica.

- Motivation behind semi-empirical models
- Stepwise modeling approach: Wheel and tyre models
 - Level 1: ideally rolling wheel
 - Level 2: slick-tyre wheel (Dry-Friction)
 - Level 3: tread-tyre wheel (Slip-Based Characteristic)
- Here, we model only in planar mechanics

Motivation

Wheels

• In our planar-mechanical world, the wheel shall roll on the whole xyplane

- The angle phi describes the orientation (driving direction) of the wheel.
- The wheel rotation around the axis is described by an extra rotational flange.
- The wheel cannot tilt. It is always in upright position. So the third angle is neglected.

• The actual wheel can be decomposed into three components:

- A one-dimensional inertia that models the inertia of the wheel around the wheel axis.
- A two dimensional body-component that models the mass and inertia with respect to the planar domain.
- A "wheel joint" that implements the non-holonomic constraints of motion.
- Only the wheel joint needs to be modeled.

• The actual wheel can be decomposed into three components:

- The wheel joint establishes non-holonomic constraints on the level of velocity.
 - The lateral velocity is zero
 - The longitudinal velocity is proportional to the wheels rotation so that the velocity of the virtual contact point is zero.

Level 1: Ideal rolling

Fundamental assumptions

- The wheel is treated as a freely moving body.
- The fundamental equations of motion apply.
- The contact-forces result out of the constraint equations.

Robotics and Mechatronics Centre

Let us model a simple version of the wheel joint.

 Let us assume that the driving direction is the x-axis and that the orientation phi is fixed to 0°. model IdealWheelJoint
Interfaces.Frame_a frame_a;
Rotational.Interfaces.Flange_a flange_a;
parameter SI.Length radius;

```
SI.AngularVelocity w_roll;
SI.Velocity v[2], v_long;
SI.Force f_long;
```

equation

```
v = der({frame_a.x, frame_a.y});
w_roll = der(flange_a.phi);
```

```
v_long = radius*w_roll;
```

```
v_long = v[1];
v[2] = 0;
```

```
-f_long*R = flange_a.tau;
frame_a.phi = 0;
frame a.fx= f long;
```

```
end IdealWheelJoint;
```


Robotics and Mechatronics Centre

Let us model a simple version of the wheel joint.

- Retrieving the velocities
- Projecting the driving velocity
- Non-holonomic constraints
- Transmission of force

```
model IdealWheelJoint
Interfaces.Frame_a frame_a;
Rotational.Interfaces.Flange_a flange_a;
parameter SI.Length radius;
```

```
SI.AngularVelocity w_roll;
SI.Velocity v[2], v_long;
SI.Force f_long;
```

equation

```
v = der({frame_a.x, frame_a.y});
w_roll = der(flange_a.phi);
```

```
v_long = radius*w_roll;
```

```
v_long = v[1];
v[2] = 0;
```

```
-f_long*R = flange_a.tau;
frame_a.phi = 0;
frame_a.fx= f_long;
```

```
end IdealWheelJoint;
```


Robotics and Mechatronics Centre

Let us model a simple version of the wheel joint.

- Now let us parameterize the driving direction by sx and sy
- We project the velocity from 1D into 2D
- We project the force from 2D into 1D.

model IdealWheelJoint
Interfaces.Frame_a frame_a;
Rotational.Interfaces.Flange_a flange_a;
parameter SI.Length radius;
parameter SI.Length r[2];
final parameter SI.Length l = sqrt(r*r);
final parameter Real e[2] = r/l;
SI.AngularVelocity w_roll;
SI.Velocity v[2], v_long;
SI.Force f long;

```
v = der({frame_a.x,frame_a.y});
v = v_long*e0;
w_roll = der(flange_a.phi);
v_long = radius*w_roll;
-f_long*radius = flange_a.tau;
frame_a.t = 0;
{frame_a.fx, frame_a.fy}*e0 = f_long;
end IdealWheelJoint;
```


Robotics and Mechatronics Centre

Let us model a simple version of the wheel joint.

- Now we remove the holonomic constraint on the angle.
- We know this procedure from the prismatic joint.

```
model IdealWheelJoint
Interfaces.Frame_a frame_a;
Rotational.Interfaces.Flange_a flange_a;
parameter SI.Length radius;
parameter SI.Length r[2];
final parameter SI.Length l = sqrt(r*r);
final parameter Real e[2] = r/l;
SI.AngularVelocity w_roll;
SI.Velocity v[2], v_long;
SI.Force f long;
```

```
v = der({frame_a.x,frame_a.y});
v = v_long*e0;
w_roll = der(flange_a.phi);
v_long = radius*w_roll;
-f_long*radius = flange_a.tau;
frame_a.t = 0;
{frame_a.fx, frame_a.fy}*e0 = f_long;
end IdealWheelJoint;
```

Single-Track Model

- We can use the wheel joints to construct a single-track model of a vehicle.
- This model has simply two masses:
 One representing the rear frame and one representing the front part.
- The wheels have no separate inertia.

Single Track Model: Results

Level 2: Wheel with Dry Friction

- The model of a rigid wheel resembles roughly a train-wheel.
- We maintain the holonomic constraint: The wheel is bounded to the trackplane (that is anyway the case in planar mechanics)
- The two non-holonomic constraints are released: slippage is allowed.

Wheel with Dry Friction

Robotics and Mechatronics Centre

Now let us implement a rigid wheel with the dry-friction law:

name Let us determine the parameters:

- Coefficients for stiction and friction (common for lateral and longitudinal direction)
- Normal Force
- Adhesive velocity, Sliding Velocity (for regularization purposes)

```
model IdealWheelJoint
  parameter SI.Force N;
  parameter SI. Velocity vAdhesion;
  parameter SI.Velocity vSlide;
  parameter Real mu_A ;
  parameter Real mu S;
 [...]
```

```
equation
```

end IdealWheelJoint;

Wheel with Dry Friction

Robotics and Mechatronics Centre

Now let us implement a rigid wheel with the dry-friction law:

name

- First, we determine the longitudinal and lateral velocities
- 2. Then we compute the slip velocities
- 3. Given the slip-velocities, we can compute the force
- 4. This projected on the frameforces

```
model IdealWheelJoint
[...]
```

equation

```
v_long = v*e0;
v_lat = -v[1]*e0[2] + v[2]*e0[1];
```

```
f_long = {frame_a.fx,frame_a.fy}*e0;
f_lat = {frame_a.fy,-frame_a.fx}*e0;
```

```
[...]
end IdealWheelJoint;
```

Dry Friction: Test Model

- In order to test our dry-friction wheel model, let us build the following virtual test rig.
- The wheel is forced on a circular path by a mechanic construction.
- The ideal wheel would turn on a circle with constant radius in ever increasing speed.
- What does the wheel with the dryfriction model?

Dry Friction: Trajectory

Dry Friction: Trajectory

Dry Friction: Trajectory

- The wheel behaves approximately like an ideal rolling wheel as long as the tire adheres to the surface.
- There is only a small lateral deflection
- When the speed becomes to large, the wheel enters sliding friction until the radius is wide enough to move the lateral force below the threshold value.

Level 3: Slip-Based Wheel

- The tread elements are temporarily deflected in the tread shuffle. The force is transmitted according to this deflection.
- To describe the force transmission, the concept of "slip" is widely used.
- The slip is defined to be the quotient of the slip-velocity and the rollvelocity and represents (roughly speaking) the fraction of wheel spin.
- The slip is a dimensionless size that is proportional to the mean deflection of the tread elements. (Presuming the tread elements adhere)

• Dependence of the transmission forces on the slip.

• Unfortunately, the slip turns out to be inappropriate for low rolling-velocities. Thus, its explicit computation is avoided.

Robotics and Mechatronics Centre

Robotics and Mechatronics Centre

Finally, the computation of the slip is avoided and the model is stable and accurate for all rolling-velocities.

Slip Based Wheel

Now let us implement a slip-based wheel:

The only thing we need to do is:

- make vAdhesion and vSlip proportional to the rolling speed.
- Provide minimum values in order to avoid a singularity at w = 0
- Furthermore, we make the normal load dynamic. (we need this later on)

```
model IdealWheelJoint
```

```
RealInput dynamicLoad(unit="N")
parameter SI.Velocity vAdhesion_min ;
parameter SI.Velocity vSlide_min ;
parameter Real sAdhesion ;
parameter Real sSlide;
[...]
```

```
equation
```

```
[...]
```

Slip Based Wheel

Robotics and Mechatronics Centre

Now let us implement a slip-based wheel:

name

Still the model is very simple

- No camber influence
- No self-alignment
- No bore torque
- No dynamic tire behavior.
- Etc..

```
model IdealWheelJoint
```

```
RealInput dynamicLoad(unit="N")
parameter SI.Velocity vAdhesion_min ;
parameter SI.Velocity vSlide_min ;
parameter Real sAdhesion ;
parameter Real sSlide;
[...]
```

equation

```
[...]
```

Slip Based: Trajectory

- The increasing speeds leads enables a higher lateral slip-velocity.
- Hence, the trajectory resembles a spiral.

Bonus: Influence of Camber

Bonus: Influence of Bore-Torque...

Bonus: Influence of Self-Alignment TIM +

Bonus: Tyre Deformation

- Longitudinal and lateral deflections are modeled by virtual spring-damper systems.
- The velocity of the deformation influences the slip-velocity.
- The shift of the contact-point leads to additional torques.

Bonus: Tyre Deformation

Questions ?