# Virtual Physics <br> Equation-Based Modeling 

TUM, November 18, 2014

Wheels and Tires: Realization in Planar Mechanics


Dr. Dirk Zimmer
German Aerospace Center (DLR), Robotics and Mechatronics Centre

## Outline

In this lecture, we are going we study the design of semi-empirical wheel models and their implementation in Modelica.

- Motivation behind semi-empirical models
- Stepwise modeling approach: Wheel and tyre models
- Level 1: ideally rolling wheel
- Level 2: slick-tyre wheel (Dry-Friction)
- Level 3: tread-tyre wheel (Slip-Based Characteristic)
- Here, we model only in planar mechanics

Robotics and Mechatronics Centre

approach more


## Wheels

- In our planar-mechanical world, the wheel shall roll on the whole xyplane

- The angle phi describes the orientation (driving direction) of the wheel.
- The wheel rotation around the axis is described by an extra rotational flange.
- The wheel cannot tilt. It is always in upright position. So the third angle is neglected.


## Wheels

Robotics and Mechatronics Centre

- The actual wheel can be decomposed into three components:

- A one-dimensional inertia that models the inertia of the wheel around the wheel axis.
- A two dimensional body-component that models the mass and inertia with respect to the planar domain.
- A "wheel joint" that implements the non-holonomic constraints of motion.
- Only the wheel joint needs to be modeled.


## Wheels

- The actual wheel can be decomposed into three components:

- The wheel joint establishes non-holonomic constraints on the level of velocity.
- The lateral velocity is zero
- The longitudinal velocity is proportional to the wheels rotation so that the velocity of the virtual contact point is zero.


## Level 1: Ideal rolling

Robotics and Mechatronics Centre

## Fundamental assumptions

- The wheel is treated as a freely moving body.
- The fundamental equations of motion apply.
- The contact-forces result out of the constraint equations.



## Ideal Rolling Wheel

Let us model a simple version of the wheel joint.


- Let us assume that the driving direction is the x-axis and that the orientation phi is fixed to $0^{\circ}$.

```
model IdealWheelJoint
    Interfaces.Frame_a frame_a;
    Rotational.Interfaces.Flange_a flange_a;
    parameter SI.Length radius;
    SI.AngularVelocity w_roll;
    SI.Velocity v[2], v_long;
    SI.Force f_long;
equation
    v = der({frame_a.x, frame_a.y});
    w_roll = der(flange_a.phi);
    v_long = radius*w_roll;
    v_long = v[1];
    v[2] = 0;
    -f_long*R = flange_a.tau;
    frame_a.phi = 0;
    frame_a.fx= f_long;
end IdealWheelJoint;
```


## Ideal Rolling Wheel

Let us model a simple version of the wheel joint.


- Retrieving the velocities
- Projecting the driving velocity
- Non-holonomic constraints
- Transmission of force

```
model IdealWheelJoint
    Interfaces.Frame_a frame_a;
    Rotational.Interfaces.Flange_a flange_a;
    parameter SI.Length radius;
    SI.AngularVelocity w_roll;
    SI.Velocity v[2], v_long;
    SI.Force f_long;
equation
    v = der({frame_a.x, frame_a.y});
    w_roll = der(flange_a.phi);
    v_long = radius*w_roll;
    v_long = v[1];
    v[2] = 0;
    -f_long*R = flange_a.tau;
    frame_a.phi = 0;
    frame_a.fx= f_long;
end IdealWheelJoint;
```


## Ideal Rolling Wheel

Let us model a simple version of the wheel joint.


- Now let us parameterize the driving direction by sx and sy
- We project the velocity from 1D into 2D
- We project the force from 2D into 1 D.

```
model IdealWheelJoint
    Interfaces.Frame_a frame_a;
    Rotational.Interfaces.Flange_a flange_a;
    parameter SI.Length radius;
    parameter SI.Length r[2];
    final parameter SI.Length l = sqrt(r*r);
    final parameter Real e[2] = r/l;
    SI.AngularVelocity w_roll;
    SI.Velocity v[2], v_long;
    SI.Force f_long;
equation
    R = {{cos(frane_a.phi), sin(frame_a.phi)},
        {-sin(framea. phi), cos(framea. phi)}};
    e0 = R*e;
    v = der({frame_a.x,frame_a.y});
    v = v_long*e0;
    w_roll = der(flange_a.phi);
    v_long = radius*w_roll;
    -f_long*radius = flange_a.tau;
    frame_a.t = 0;
    {frame_a.fx, frame_a.fy}*e0 = f_long;
end IdealWheelJoint;
```


## Ideal Rolling Wheel

Let us model a simple version of the wheel joint.


- Now we remove the holonomic constraint on the angle.
- We know this procedure from the prismatic joint.

```
model IdealWheelJoint
```

model IdealWheelJoint
Interfaces.Frame_a frame_a;
Interfaces.Frame_a frame_a;
Rotational.Interfaces.Flange_a flange_a;
Rotational.Interfaces.Flange_a flange_a;
parameter SI.Length radius;
parameter SI.Length radius;
parameter SI.Length r[2];
parameter SI.Length r[2];
final parameter SI.Length $l=s q r t\left(r^{*} r\right)$;
final parameter SI.Length $l=s q r t\left(r^{*} r\right)$;
final parameter Real e[2] = $r / l$;
final parameter Real e[2] = $r / l$;
SI.AngularVelocity w_roll;
SI.AngularVelocity w_roll;
SI.Velocity v[2], v_long;
SI.Velocity v[2], v_long;
SI.Force f_long;
SI.Force f_long;
equation
equation
$R=\{\{\cos ($ frane_a. $p h i), \sin ($ frane_a. $p h i)\}$,
$R=\{\{\cos ($ frane_a. $p h i), \sin ($ frane_a. $p h i)\}$,
$\{-\sin ($ frane_a. phi) $\cos ($ frane_a. phi) $\}$;
$\{-\sin ($ frane_a. phi) $\cos ($ frane_a. phi) $\}$;
e0 = R*e;
e0 = R*e;
$v=\operatorname{der}\left(\left\{f r a m e \_a \cdot x, f r a m e \_a \cdot y\right\}\right) ;$
$v=\operatorname{der}\left(\left\{f r a m e \_a \cdot x, f r a m e \_a \cdot y\right\}\right) ;$
v = v_long*e0;
v = v_long*e0;
w_roll = der(flange_a.phi);
w_roll = der(flange_a.phi);
v_long = radius*w_roll;
v_long = radius*w_roll;
-f_long*radius = flange_a.tau;
-f_long*radius = flange_a.tau;
frame_a.t = 0;
frame_a.t = 0;
\{frame_a.fx, frame_a.fy\}*e0 = f_long;
\{frame_a.fx, frame_a.fy\}*e0 = f_long;
end IdealWheelJoint;

```
end IdealWheelJoint;
```


## Single-Track Model

- We can use the wheel joints to construct a single-track model of a vehicle.
- This model has simply two masses: One representing the rear frame and one representing the front part.
- The wheels have no separate inertia.



## Single Track Model: Results

Robotics and Mechatronics Centre



## Level 2: Wheel with Dry Friction

- The model of a rigid wheel resembles roughly a train-wheel.
- We maintain the holonomic constraint: The wheel is bounded to the trackplane (that is anyway the case in planar mechanics)
- The two non-holonomic constraints are released: slippage is allowed.
- The contact forces become now a function of the slip-velocity:



## Wheel with Dry Friction

Now let us implement a rigid wheel with the dry-friction law:


Let us determine the parameters:

- Coefficients for stiction and friction (common for lateral and longitudinal direction)
- Normal Force
- Adhesive velocity, Sliding

Velocity (for regularization purposes)
model IdealWheelJoint

```
parameter SI.Force N;
parameter SI.Velocity vAdhesion;
parameter SI.Velocity vSlide;
parameter Real mu_A ;
parameter Real mu_S;
```

```
[...]
```

```
equation
```

    [...]
    end IdealWheelJoint;

## Wheel with Dry Friction

Now let us implement a rigid wheel with the dry-friction law:


1. First, we determine the longitudinal and lateral velocities
2. Then we compute the slip velocities
3. Given the slip-velocities, we can compute the force
4. This projected on the frameforces
```
model IdealWheelJoint
```

model IdealWheelJoint
[...]
[...]
equation
equation
v_long = v*e0;
v_long = v*e0;
v_lat $=-\mathrm{v}[1] * e 0[2]+\mathrm{v}[2] * e 0[1] ;$
v_lat $=-\mathrm{v}[1] * e 0[2]+\mathrm{v}[2] * e 0[1] ;$
v_slip_lat = v_lat - 0;
v_slip_lat = v_lat - 0;
v_slip_long = v_long - radius*w_roll;
v_slip_long = v_long - radius*w_roll;
v_slip $=$ sqrt(v_slip_long^2 +
v_slip $=$ sqrt(v_slip_long^2 +
v_slip_lat^2)+0.0001;
v_slip_lat^2)+0.0001;
-f_long*R = flange_a.tau;
-f_long*R = flange_a.tau;
frame_a.t = 0;
frame_a.t = 0;
f = N*TripleS_Func(vAdhesion,
f = N*TripleS_Func(vAdhesion,
vSlide,mu_A,mu_S, v_slip);
vSlide,mu_A,mu_S, v_slip);
f_long =f*v_slip_long/v_slip;
f_long =f*v_slip_long/v_slip;
f_lat =f*v_slip_lat/v_slip;
f_lat =f*v_slip_lat/v_slip;
f_long = \{frame_a.fx,frame_a.fy\}*e0;
f_long = \{frame_a.fx,frame_a.fy\}*e0;
f_lat $=\left\{f r a m e \_a . f y,-f r a m e \_a . f x\right\}^{*} e 0 ;$
f_lat $=\left\{f r a m e \_a . f y,-f r a m e \_a . f x\right\}^{*} e 0 ;$
[...]
[...]
end IdealWheelJoint;

```
end IdealWheelJoint;
```


## Dry Friction: Test Model

- In order to test our dry-friction wheel model, let us build the following virtual test rig.
- The wheel is forced on a circular path by a mechanic construction.
- The ideal wheel would turn on a circle with constant radius in ever increasing speed.
- What does the wheel with the dryfriction model?



## Dry Friction: Trajectory

Robotics and Mechatronics Centre


## Dry Friction: Trajectory

Robotics and Mechatronics Centre


## Dry Friction: Trajectory

- The wheel behaves approximately like an ideal rolling wheel as long as the tire adheres to the surface.
- There is only a small lateral deflection
- When the speed becomes to large, the wheel enters sliding friction until the radius is wide enough to move the lateral force below the threshold value.



## Level 3: Slip-Based Wheel

- The tread elements are temporarily deflected in the tread shuffle. The force is transmitted according to this deflection.
- To describe the force transmission, the concept of "slip" is widely used.
- The slip is defined to be the quotient of the slip-velocity and the rollvelocity and represents (roughly speaking) the fraction of wheel spin.
- The slip is a dimensionless size that is proportional to the mean deflection of the tread elements. (Presuming the tread elements adhere)



## Level 4: Slip Characteristics

- Dependence of the transmission forces on the slip.

- Unfortunately, the slip turns out to be inappropriate for low rolling-velocities. Thus, its explicit computation is avoided.


## Level 4: Slip Characteristics

Here, the slip-characteristics are displayed with respect to the rollingvelocity and the slip-velocity

the curve reaches a singular point for vRoll->0

## Level 4: Slip Characteristics

But, we still have our dry-friction model. It represents an appropriate solution for low rolling velocities.


## Level 4: Slip Characteristics

Robotics and Mechatronics Centre

So... let's combine our two models:


Finally, the computation of the slip is avoided and the model is stable and accurate for all rolling-velocities.

## Slip Based Wheel

Now let us implement a slip-based wheel:


The only thing we need to do is:

- make vAdhesion and vSlip proportional to the rolling speed.
- Provide minimum values in order to avoid a singularity at $\mathrm{w}=0$
- Furthermore, we make the normal load dynamic.
(we need this later on)
model IdealWheelJoint

```
    RealInput dynamicLoad(unit="N")
    parameter SI.Velocity vAdhesion_min ;
    parameter SI.Velocity vSlide_min ;
    parameter Real sAdhesion ;
    parameter Real sSlide;
    [...]
equation
    [...]
    vAdhesion = max(
        sAdhesion*abs(radius*w_roll),
        vAdhesion_min
    );
    vSlide = max(
        sSlide*abs(radius*w_roll),
        vSlide_min
    );
    fN = max(0, N+dynamicLoad);
    f = fN*TripleS_Func(vAdhesion,vSlide,
                                    mu_A,mu_S,v_slip);
end IdealWheelJoint;
```


## Slip Based Wheel

Now let us implement a slip-based wheel:


Still the model is very simple

- No camber influence
- No self-alignment
- No bore torque
- No dynamic tire behavior.
- Etc..
model IdealWheelJoint

```
    RealInput dynamicLoad(unit="N")
    parameter SI.Velocity vAdhesion_min ;
    parameter SI.Velocity vSlide_min ;
    parameter Real sAdhesion ;
    parameter Real sSlide;
    [...]
equation
    [...]
    vAdhesion = max(
        sAdhesion*abs(radius*w_roll),
        vAdhesion_min
    );
    vSlide = max(
        sSlide*abs(radius*w_roll),
        vSlide_min
    );
    fN = max(0, N+dynamicLoad);
    f = fN*TripleS_Func(vAdhesion,vSlide,
                                    mu_A,mu_S,v_slip);
end IdealWheelJoint;
```


## Slip Based: Trajectory

Robotics and Mechatronics Centre

- The increasing speeds leads enables a higher lateral slip-velocity.
- Hence, the trajectory resembles a spiral.



## Bonus: Influence of Camber

Robotics and Mechatronics Centre

(a)


(c)


## Bonus: Influence of Bore-Torque...



# Bonus: Influence of Self-Alignment $\pi \|$ + 



## Bonus: Tyre Deformation

- Longitudinal and lateral deflections are modeled by virtual spring-damper systems.
- The velocity of the deformation influences the slip-velocity.
- The shift of the contact-point leads to additional torques.



## Bonus: Tyre Deformation




## Questions?

