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In this lecture, we look at the modeling of 3D mechanical systems.

e 3D mechanical models look superficially just like planar
mechanical models. There are additional types of joints, but
other than that, there seem to be few surprises.

e Yet, the seemingly similar appearance is deceiving. There are a
substantial number of complications that the modeler has to
cope with when dealing with 3D mechanics. These are the
subject of this lecture.

© Dirk Zimmer, December 2014, Slide 2




3D Mechanics m - ‘#;?R

Robotics and Mechatronics Centre

Essentially, there are 3 major difficulties we have to cope with:

1.  There are multiple ways to express the orientation of a body in
three dimensional space.

2. In planar mechanics, all potential variables could be expressed
in one common coordinate system: The inertial system. In 3D-
mechanics, such an approach is unfeasible.

3. The set of connector variables contains a redundant set of
variables. This causes severe problems for the formulation of
kinematic loops.
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There are 4 major variants to express the orientation of an object in 3D

+y

"\

\ &%

e The rotation matrix
e Planar rotation

e (Cardan angles

e (Quaternions
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The rotation matrix R y '\

4y
e The orientation of an object is ) T
completely defined by the coordinate z l Y
vectors of its body system. z

e The relative orientation between two
objects can then be described by a
orthonormal matrix:
the rotation matrix R.

¥ 4

R1=R"
e Given the rotational matrix, we can
easily transform vectors between
different coordinate systems, e. g., |IR]|,=1
Rw, = Wy,
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The rotation matrix R y '\
: L +y X
e The rotational matrix R is highly T
redundant. ! z [ Y
Z

e Each row vector and each column
vector of R is of length 1, hence there

X
are 6 constraint equations g
connecting the 9 matrix elements.
R1=RT
e Asexpected, there are only 3
degrees of freedom, describing the
relative rotation of one coordinate [IR[];=1

system to another.
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The cardan angles (¢,, @,, ®,)

e A non-redundant form to describe
the orientation are cardan angles.

e This technique decomposes the
rotation into three subsequent
rotations around predetermined
axes.

* |n this case:
first x,
theny,
finally z.

R, =

R. =

0
COS(“H\) 9”7(&”\')
Sm'(“ﬂ\) COS‘(Y\')
COS‘(&“*.) 0 97”(&“1)

0
Sln(&ﬁ) 0 cos(py)
cos(p-)  sin(p-) 0
—sm(\r,) cos(&,) 0
1
R=R, R, R,
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The Cardan Angles (¢,, @,, @,)
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The cardan angles (¢,, @,, ®,)

Unfortunately, the decomposition
into separate yields a singularity at
@, = 90" The other two rotation axes
are then aligned and there are
infinitely many solutions.

So cardan angles are only useful, if
one can make sure this case won’t
appear during simulation time.

The sequence of axis rotation can be
chosen arbitrarily. Other sequences
are of course possible as well and
each valid sequence has a specific
point where the systems becomes
singular.

R,

1 0 0
=1 0 cos(py) sin(py)
0 —sin(p,) cos(py)

cos(py) 0 —sin(py)
= 0 1 0
sm(p,) 0 cos(py)

cos(p:)  sin(e:) 0
= | =sin(p-) cos(p-) 0
0 0 1

R=R, R, R,

© Dirk Zimmer, December 2014, Slide 8




The Planar Rotation (n, ¢) nm - %~

Robotics and Mechatronics Centre

The planar rotation (n, ¢):

e Every rotation can be regarded as a
planar rotation with the angle @
around a certain axis given by a unit
vector n.

: R =nn’ + (I—nn’) cos(v)—fisin(
e We therefore have 4 variables and nn’ + (/—nn") cos(ip) —fsin(p)
one constraint equation for the unit

vector.
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The Planar Rotation (n, ¢)
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The planar rotation (n, ¢):

e Unfortunately, also the planar
rotation method is not always
invertible in a unique fashion. A null
rotation does not have a well defined
axis of rotation.

e Hence, this method should only be
used if the axis of rotation is always
known, as in a revolute joint.

Matrix notation of
the cross product

()

axb=ab
0 —d3 (5]
= as 0 —d|
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e (Quaternions are an extension of complex numbers and offer a robust
way to describe any rotation. A quaternion number consists of one real
and three imaginary components, denoted by i, j and k.

e The imaginary components can be summarized by a vector u.

O=c+ui+vj+wk. =c+u

e The multiplication rules for the imaginary components are as follows:

ij=k ji=-k, i#=-1
jk=i kj=—i; j2=-1
ki=j, ik=-j; k*=-1
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So the product of two quaternions can be written as:

Q0 = (c+u)(d+u)=(cc—u-u)+(u xu)+cu' +c'u

e The complement of a quaternion number is defined to be:
O=c+u=c—u
e The product of a quaternion number with its complement results in its

norm: 5
Ol=c*+|ul

e A unit quaternion is a quaternion of norm 1.

0= +fuP =1
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e According to the trigonometric Pythagoras...
cos(p/2)* +sin(p/2)* =1
e thereis anangle @ for every unit quaternion such that:

c=cos(p/2) and |u| = sin(yp/2)

e |tis now evident how a unit quaternion can be used to describe an
orientation. The idea is related to the planar rotation. The imaginary
component u describes the axis, and the length of the axis describes
the rotation angle.

e The rotation matrix is then defined by:

R=2uu’ +2(u-c)+2c°1-1
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e So which of the four methods shall we apply?
e The answer is: all of them

e The rotational matrix is highly redundant but purely linear.
=>» It is used in the connector

e (Cardan angles can be used for a spherical joint if the motion is limited
to non-singular (or ill-conditioned) areas.

=» Free rotational motion, spherical joint

e Planar rotation is used when the rotational axis is known.
=» Revolute Joint

e (Quaternions are the methods that avoids any singularity with the
slightest degree of redundancy. (But leads to non-linear equations)

=» Free rotational motion, spherical joint
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e |In planar mechanics, w was the derivative of ¢.

* |n 3D mechanics, this is not so easy anymore. w represents a vector.
e |w]| represents the actual angular velocity

e w/|w] is the unit-vector of the rotation axis.

e w can either be resolved w.r.t. the inertial frame (w,) or w.r.t to the
body frame (wyg,) -

The body frame is the coordinate system attached to the body.
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Motion in 3D: Rotation Matrix
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The rotational matrix is the one to integrate:

C:}OR — R@bgdv =R

This generates 9 differential equations and is thus never used.
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Motion in 3D: Cardan Angles
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The rotation matrix R results out of a planar rotation:

R Wo — wbﬂrﬁf

1 differential equations

Fa)

n.k)"/
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e The rotation matrix R results out of the cardan angles:

Whody — &5: + R: k;91 T+ R_-Rv I.TC*{

Wo — “-;51' +R5k?§1 +R5R‘Tkp:

« 3 differential equations (non-redundant)
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Motion in 3D: Quaternions
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The rotation matrix R results out of the quaternion rotation:

C
Whody — 2 w
—V

c
—W
"

4 differential equations (1 redundant causes dynamic state selection)
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e The choice of a method can severely impact the simulation
performance:
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e This experiment was simulated 3 times with a different method for the

orientation: 1) well chosen cardan angles, 2) badly chosen cardan
angles 3) quaternions
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e The choice of a method can severely impact the simulation
performance:

0.0+ f \
,I'-I II'II fﬁ\ /|
i Il '|I. /
i \ IL_ Fi
02 .I "1.
1 i
\II

-0.64 / K \/ // \
J f i/ A
_ I/ ] ':r Y
A // \\
R { [ I
0.8 /s \ JA //

i / \ / i I\
-1.0- =

0.0 04 0.8 12 16 20 24 28

e This experiment was simulated 3 times with a different method for the
orientation: 1) well-chosen cardan angles, 2) badly chosen cardan
angles 3) quaternions
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e The choice of a method can severely impact the simulation

performance:
good cardan angle seq. quaternions bad cardan angle seq.
tolerance error steps error steps error steps

1.0-107* | 4.9-107* 2.9.10° 50-10° 2.6-10* | 1.8-107° 54.10*
1.0-107° | 9.7-10°° 6.2-10° 3.1-100* 4.8-10* | 2.9-10* 9.5-10*
1.0-107% | 1.2-1077 1.4-10 1.1-107° 8.4-10* | 3.5-107° 2.0-10°
1.0-1071° | 1.2-1077 2.3-10* 1.1-10° 1.4-10° | 3.0-10° 4.4.10°

e The choice drastically impacts the computational efficiency and the
precision.
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Questions ?
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