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In this lecture, we look at the modeling of 3D mechanical systems. 

 
• 3D mechanical models look superficially just like planar 

mechanical models. There are additional types of joints, but 
other than that, there seem to be few surprises. 
 

• Yet, the seemingly similar appearance is deceiving. There are a 
substantial number of complications that the modeler has to 
cope with when dealing with 3D mechanics. These are the 
subject of this lecture. 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

3D Mechanics 
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Essentially, there are 3 major difficulties we have to cope with: 

 
1. There are multiple ways to express the orientation of a body in 

three dimensional space.  
 

2. In planar mechanics, all potential variables could be expressed 
in one common coordinate system: The inertial system. In 3D-
mechanics, such an approach is unfeasible. 
 

3. The set of connector variables contains a redundant set of 
variables. This causes severe problems for the formulation of 
kinematic loops. 

 

 

 

3D Mechanics 
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• In planar mechanics, all connector variables are resolved w.r.t. the 
inertial coordinate system. 

• In 3D-mechanics, we will refer also to the body system. A coordinate 
system that is attached to each body. 

• Notation The index 0 indicates that a vector is resolved w.r.t. to the 
ineratial system. The index body indicates that is resolved w.r.t. to 
its body system. 

Fundamental set of equations 
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• The rotational matrix can be used to transform between these 
coordinate systems. For instance 
 

 Rω0 = ωbody 
 

 ω0 = RTωbody 
 

 
 

• Repetition: The rotational matrix is the one to integrate: 
 

 

 

 

 

 

 

Rotation Matrix 
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• The fundamental set of equations can be formulated in the inertial 
system: 
 
 
 

 
 

 

• In planar mechanics, the rotational inertia was represented by a simple 
scalar I. In 3D mechanics, it is represented by a 3D matrix J: the inertia 
tensor. 

• However, J0 is not a constant during motion since it depends on the 
orientation of the body.  

Fundamental set of equations 
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• In the body-system, the inertia tensor Jbody is constant. Hence we can 
transform the law into the body system: 
 
 
 

 
 

 

Fundamental set of equations 
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transform the law into the body system: 
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• In the body-system, the inertia tensor Jbody is constant. Hence we can 
transform the law into the body system: 
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• In the body-system, the inertia tensor Jbody is constant. Hence we can 
transform the law into the body system: 
 

• An additional term for the torque occurs: The gyroscopic torque. 
 

• This torque is a pseudo-torque that resulted out of the transformation 
into the body system. 
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• We have observed the (highly non-intuitive) behavior of the gyroscopic 
effect, already last lecture: 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
 
 
 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

Selection of Method 
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• The translational components can be more conveniently described in 
the inertial system.  
 
 

• The rotational components are preferably resolved w.r.t. to the body 
system. 
 
 
 
 
 

Connector Design 
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• In the MultiBody library, the 
connector is designed as 
follows: 
 

• Vectors and matrices are 
supported natively by 
Modelica and used for the 
connector variables. 
 

 
 
 
 
 
 
 

Connector Design 

 
connector Frame  
 
 
  SI.Position r_0[3]; 
 
  Real T[3, 3]; 
 
  SI.AngularVelocity w[3]  
 
 
 
  flow SI.Force f[3]; 
 
  flow SI.Torque t[3]; 
 
 
end Frame; 
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• In the MultiBody library, the 
connector is designed as 
follows: 
 

• Resolved w.r.t. to the 
inertial system:  
 
r_0, T 
 

• Resolved w.r.t. to the body 
system (T): 
 
w, t, and f (why ever…) 

 

Connector Design 

 
connector Frame  
 
 
  SI.Position r_0[3]; 
 
  Real T[3, 3]; 
 
  SI.AngularVelocity w[3]  
 
 
 
  flow SI.Force f[3]; 
 
  flow SI.Torque t[3]; 
 
 
end Frame; 
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Let us look at the fixed translation component: 
 

• It essentially represents the lever principle. 

An example component 

r 

a b 

t 

f 

t = r x f r 
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Let us look at the fixed translation component: 
 

• It essentially represents the lever principle. 

An example component 

r 

a b 

ω 

v 

v = r x ω r 
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Let us look at the fixed translation component: 
 

• It essentially represents the lever principle. 

An example component 

model FixedTranslation  
  parameter SI.Position r[3] = {0,0,0}; 
 
  frame_b.r_0 = frame_a.r_0 + transpose(frame_a.T)*r; 
  frame_b.T = frame_a.T; 
  frame_b.w = frame_a.w; 
   
  zeros(3) = frame_a.f + frame_b.f; 
  zeros(3) = frame_a.t + frame_b.t + cross(r, frame_b.f); 
 
end FixedTranslation; 

r 

a b 
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• Here, the multibody 
components are used to 
assemble a robot. 
 

• It essentially consists out of  
fixed translations combined 
with body parts and 
actuated revolute joints. 
 

An example system: The robot 
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• The potential variables of 
the Multibody connector are 
highly redundant. 
 

• Only 3 variables are 
sufficient to describe the 
3D-rotation. 
 

• But the connector contains 
3*3 + 3 = 12 potential 
variables for the rotational 
part. 
 
 

Redundant Connector Variables 

 
connector Frame  
 
 
  SI.Position r_0[3]; 
 
  Real T[3, 3]; 
 
  SI.AngularVelocity w[3]  
 
 
 
  flow SI.Force f[3]; 
 
  flow SI.Torque t[3]; 
 
 
end Frame; 
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+ Kinematic Loops 
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• This redundancy causes 
severe problems in case of 
kinematic loops. 
 

• Closing a kinematic loop 
establishes 6 constraint 
equations. 
 

• But the redundant 
connector set leads to 15 
constraint equations (these 
are 9 too many). 
 
 

Kinematic Loops 
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• In the “old days”, the loops 
had to manually closed with 
the aid of a loop-breaker. 
 

• The loop-breaker is a model 
that contains just the 
necessary 6 constraint 
equations  
(and the balance of force and torque, naturally) 

 
 

Kinematic Loops 
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• In the “old days”, the loops had to manually closed with the aid 
of a loop-breaker. 
 

• The loop-breaker is a model that contains just the necessary 6 
constraint equations  
(and the balance of force and torque, naturally) 

 
 

Kinematic Loops 

 
model LoopBreaker  
  Interfaces.Frame_a frame_a; 
  Interfaces.Frame_b frame_b; 
 
equation  
  frame_a.r_0 frame_b.r_0; 
  cross(frame_a.T[1, :], frame_a.T[2, :])*frame_b.T[2, :] = 0; 
  -cross(frame_a.T[1, :],frame_a.T[2, :])*frame_b.T[1, :] = 0; 
 frame_a.T[2, :]*frame_b.T[1, :] = 0 
 frame_a.f + frame_b.f = zeros(3); 
 frame_a.t + frame_b.t = zeros(3); 
end LoopBreaker 
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• In the “old days”, the loops had to manually closed with the aid 
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Kinematic Loops 

 
model LoopBreaker  
  Interfaces.Frame_a frame_a; 
  Interfaces.Frame_b frame_b; 
 
equation  
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• Nowadays, the loop breaker 
is not necessary anymore. 
 

• The process has been 
automated (by introducing a 
whole new set of irritating 
language constructs). 
 

 
 
 

Kinematic Loops 
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• Another special case are planar kinematic loops within 3D mechanics. 
 

• Even if we apply the correct set of constraint equations, we get a 
singular system. 
 

• Let us look at an example… 
 

Planar kinematic loops 
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• The problem is the following: 
 

• There are two planar closed 
kinematic loops each defined 
by three revolute joints and a 
prismatic joint. 
 

• Two revolute joints with the 
same rotation axis suffice to 
restrict the freedom of 
motion to a single axis. The 
constraint of the third 
revolute joint is therefore 
superfluous, which leads to 
an additional redundancy 

Planar kinematic loops 
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• To this end, there is a special 
revolute joint to cut the 
planar loop. 
 
 

Planar kinematic loops 
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