

Fundamental set of equations

• In the body-system, the inertia tensor **J**_{body} is constant. Hence we can transform the law into the body system:

$$\mathbf{t}_0 = \frac{d}{dt} \left(\mathbf{R}^T \mathbf{J}_{body} \boldsymbol{\omega}_{body} \right)$$

$$\mathbf{t}_0 = \dot{\mathbf{R}}^T \mathbf{J}_{body} \boldsymbol{\omega}_{body} + \mathbf{R}^T \mathbf{J}_{body} \dot{\boldsymbol{\omega}}_{body}$$

 $\mathbf{R}^{T}\mathbf{t}_{body} = \mathbf{R}^{T}\tilde{\boldsymbol{\omega}}_{body}\mathbf{J}_{body}\boldsymbol{\omega}_{body} + \mathbf{R}^{T}\mathbf{J}_{body}\mathbf{z}_{body}$

© Dirk Zimmer, November 2014, Slide

© Dirk Zimmer, November 2014, Slide 1

ТЛП

Robotics and Mecha

DLR

Fundamental set of equations

- In the body-system, the inertia tensor **J**_{body} is constant. Hence we can transform the law into the body system:
- An additional term for the torque occurs: The gyroscopic torque.
- This torque is a pseudo-torque that resulted out of the transformation into the body system.

 $\mathbf{t}_{body} = \boldsymbol{\omega}_{body} \times \mathbf{J}_{body} \boldsymbol{\omega}_{body} + \mathbf{J}_{body} \mathbf{z}_{body}$

Connector Design	Robotics and Mechatronics Centre
 In the MultiBody library, the connector is designed as follows: 	connector Frame
Resolved w.r.t. to the inertial system:	<pre>SI.Position r_0[3]; Real T[3, 3];</pre>
r_0, T	SI.AngularVelocity w[3]
• Resolved w.r.t. to the body system (T):	<pre>flow SI.Force f[3];</pre>
w, t, and f $({\sf why\ ever})$	<pre>flow SI.Torque t[3];</pre>
	end Frame;
	© Dirk Zimmer, November 2014, Slide 15

Redundant Connector Variables Robotics and Mechatronics Centre	
 The potential variables of the Multibody connector are highly redundant. 	connector Frame
 Only 3 variables are sufficient to describe the 3D-rotation. 	<pre>SI.Position r_0[3]; Real T[3, 3]; SI.AngularVelocity w[3]</pre>
 But the connector contains 3*3 + 3 = 12 potential variables for the rotational part. 	<pre>flow SI.Force f[3]; flow SI.Torque t[3]; end Frame;</pre>
	© Dirk Zimmer, November 2014, Slide 21

