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Real-Time Simulation with Dymola 

equation  
  sx0 = cos(frame_a.phi)*sx_norm + … 
  sy0 = -sin(frame_a.phi)*sx_norm + … 
  vy = der(frame_a.y); 
  w_roll = der(flange_a.phi); 
  v_long = vx*sx0 + vy*sy0; 
  v_lat = -vx*sy0 + vy*sx0; 
  v_slip_lat = v_lat - 0; 
  v_slip_long = v_long - R*w_roll; 
 
  v_slip = sqrt(v_slip_long^2 + … 
  -f_long*R = flange_a.tau; 
  frame_a.t = 0; 
  f = N*. S_Func(vAdhesion,vSlide,… 
  f_long =f*v_slip_long/v_slip; 
  f_lat  =f*v_slip_lat/v_slip; 
  f_long = frame_a.fx*sx0 + … 
  f_lat = -frame_a.fx*sy0 + … 
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In this lecture, we give an example of modeling a fully functional 
real-time simulation. This concerns essentially three topics: 

 
• Time-Integration for Real-Time and synchronization. 

 
• Handling of User Input. 

 
• Real-Time 3D Visualization. 

 

 

 

Real-Time Simulation 
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If we want to simulate something in real-time. The numerical ODE-
solver is subject to a few severe constraints. 

 
• The solver must compute fast enough  
 larger stepsizes or simple algorithms 
 

• If the system is interactive, there is a maximum step-size 
   favors simple algorithm. 
 fixed step-size methods 
 

• Each single integration step must be fast enough 
   no solvers with indefinite number of iterations (avoid any non-

linearities) 
   no events. 
 no implicite solvers (will be explained after Christmas) 

 
 
 

 

Time Integration 
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The two-track car model seems to be suited 
to be simulated in real time. 

 
• Only linear-systems of equations (non-

linear solvers are not required) 
 

• No events 
 

• Limited stiffness. 

Time Integration 

torque

tau

pulse

period=2

ramp

duration=2

torque1

tau



© Dirk Zimmer, December 2014, Slide 5 

Robotics and Mechatronics Centre 

+ 

In Dymola, it is very easy to simulate the two-track model in real-time. 
 

 

Time Integration 
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In Dymola it is very easy to simulate the two-track model in real-time. 
 
• We simply use the most simple solver that is available: 

Forward Euler 
 

• We use a fixed step-size of 1ms 
 

• We may reduce the number of output values (since writing to the 
disc can easily be more time-consuming that the actual 
simulation…) 
 

• In fact, we are much faster than real-time. We need to artificially 
slow-down the simulation in order to synchronize with real-time. 
 

 

 

Time Integration 
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• For time synchronization, we need a special model. 
 

• This model is contained in the Modelica Device Drivers Library 
(developed by DLR) 
 

• It slows down the simulation by calling a function that stays in an 
idle loop. 

Real-Time Synchronization 

name

Normal
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The Synchronize Realtime 
Block: 

 
 
 
 
 
 

• The block simply calls an 
Modelica function of the 
DeviceDrivers Library. 
 
 

Synchronize Realtime Block 

block SynchronizeRealtime  
 
  parameter Integer resolution(min = 1); 
  parameter ProcessPriority p; 
  output Real calculationTime; 
  output Real availableTime; 
 
equation  
 
  when (initial()) then 
    setProcessPriority( 
      if (p == "Idle") then -2  
      else if (p == "Below") then -1 
      else if (p == "Normal") then 0  
      else if (p == "High") then 1  
      else if (p == "Realtime") then 2 
      else 0); 
  end when; 
 
   (calculationTime,availableTime)  
                   =  
   realtimeSynchronize(time,resolution); 
   
end SynchronizeRealtime; 

name

Normal
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The Synchronize Realtime 
Block: 

 
 
 
 
 
 

• The block simply calls an 
Modelica function of the 
DeviceDrivers Library. 
 
 

Synchronize Realtime Function 

function realtimeSynchronize  
  input Real simTime; 
  input Integer resolution = 1; 
  output Real calculationTime; 
  output Real availableTime; 
  external "C" calculationTime =  
OS_realtimeSynchronize(simTime,resolution,
availableTime);  
 
annotation(Include = " 
#ifndef MDDSYNC 
#define MDDSYNC 
#include <windows.h>  
[…] 
  
double OS_realtimeSynchronize(double simTime,  
       int resolution, double * availableTime) { 
  […] 
 
  while((getTime(resolution)- startTime)/1000 <= simTime) 
  { 
      Sleep(0); 
  } 
  […] 
 
} 
 #endif 

"); 
end realtimeSynchronize; 

name

Normal
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• Also for the user interaction, we need a special input block. 
 

• This block is contained in the Modelica Device Drivers Library 
(developed by DLR) 
 

• The Boolean output signals indicate when a certain key is pressed 
down. 

User Interaction 

name

space

return
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The Keyboard Input Block: 
 

 
 
 
 
 

• The block simply calls an 
Modelica function of the 
DeviceDrivers Library. 
 

• It simply polls the current 
state of the keyboard with a 
given sample rate. 
 

Keyboard Input Block 

block KeyboardInput 
  parameter Real sampleT = 0.01 
 
  BooleanOutput keyUp; 
  BooleanOutput keyDown;  
  BooleanOutput keRight;  
  […] 
  
  Integer KeyCode[10]; 
  InputDevices.Keyboard keyboard; 
 
equation  
  when (sample(0,sampleT))then 
    KeyCode = keyboard.getData(); 
  end when; 
 
  keyUp = (KeyCode[1]==1); 
  keyDown = (KeyCode[2]==1); 
  keyRight = (KeyCode[3]==1); 
  […] 
 
end Frame; 
 
 

name

space

return
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The Keyboard Input Block: 
 

 
 
 
 
 

• On the right you see the 
getData function that is 
called to poll the keyboard 
state. 

• It calls an external C 
function. 

• The code is contained in the 
annotation. 
 

Keyboard Input Block 

function getData 
 
  output Integer KeyCode[10]; 
 
  external "C" KEY_getData(KeyCode); 
 
  annotation (Include=“ 
#define VOID void 
typedef char CHAR; 
typedef short SHORT; 
typedef long LONG; 
#include <windows.h>   
[…] 
void KEY_getData(int * piKeyState) 
{ 
  if(GetAsyncKeyState(VK_UP)) 
    piKeyState[0] = 1; 
  else piKeyState[0] = 0;”); 
[…] 
“ 
 
 
end getData; 
 

name

space

return
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• Using this input block, the user can only control in a Boolean way: 
ON or OFF. 
 

• To enable a more continuous control, we can filter the input signal. 
 

• To this end, we apply the critical-Damping Filter from the Modelica 
Standard Library. 

Filtering User Input 

keyboardInput
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B
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keyboardInput
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• This electrical circuit illustrates the functionality of the critical-
damping filter  

• It can be regarded as RC lowpass filter with multiple stages (in our 
case: 2) 

Filtering User Input 
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• Using critical damping 
filters, I created a 
control block for the 
car model. 
 

• Its outputs are the 
breaking forces and 
the driving and 
steering torque. 
 
 

Applying User Interaction 
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• The forces and torques are 
then applied on the car 
model. 
 
 
 

Applying User Interaction 
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torque

tau

torque1

tau

d=10

springDamper

c=10

fix
ed

synchro?

Normal

• The forces and torques are 
then applied on the car 
model. 
 

• There is simple brake 
model 
 

• The steering is limited and 
auto-centered by a spring-
damper system. 
 
 

Applying User Interaction 
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• Now we can steer and simulate our car model in real-time but this 
makes hardly any fun, if we do not have a 3D real-time 
visualization. 
 

• The SimVis Library supports a real-time visualization in 3D. It has 
been developed by DLR. 
 

• SimVis is based on the OpenSceneGraph Technology that itself 
uses the OpenGL standard. 
 

• The SimVis library is conceptually similar to the DeviceDrivers 
library. It provides a set of Modelica models that then call external 
C-functions. 

 

 

Visualization 
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• OpenSceneGraph is an open 
source implementation of the 
scene graph technology. 

 

• In the scene graph technology the 
scene is describes as a graph. 

 

• The visualization of the graph is 
based on the OpenGL 2.1 standard. 

 

• For the online-visualization, all we 
need to do is to update the graph. 

 

OpenSceneGraph 
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The SimVis Library contains various elements: 
 

• Shapes 
 
 
 

• Cameras 
 
 
 

• Lights 
 
 
 

SimVis Structure 
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The SimVis Library contains various elements: 
 

• Shapes 
 
 
 

• Cameras 
 
 
 

• Lights 
 
 
 

SimVis Structure 

  
  All these elements use 

the Frame Connector 
form the MultiBody 

library.  
 

 Hence they can simply 
be used like MultiBody 

components. 
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• The visualization of the 
wheels is integrated into 
the chassis model 

  

 

 

 

 

 

 

Applying SimVis 
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• The visualization of the wheels is integrated into the axis model 
  

 

 

 

 

 

 

Applying SimVis 
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• Lights and Landscape are 
added to form the 
complete scene. 
 

• A dynamic follow camera 
is attached to the rear 
end of the car pointing to 
the nose. 

 

Applying SimVis 
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• And voila! 
 
 
 
 
 
 
 
 
 
 
 
 

• We’re done! Almost… the rest is your task in Exercise 9. 

Finally…. 



Questions ? 
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