
Virtual Physics
Equation-Based Modeling

Dr. Dirk Zimmer

German Aerospace Center (DLR), Robotics and Mechatronics Centre

TUM, December 09, 2014

Real-Time Simulation with Dymola

equation
 sx0 = cos(frame_a.phi)*sx_norm + …
 sy0 = -sin(frame_a.phi)*sx_norm + …
 vy = der(frame_a.y);
 w_roll = der(flange_a.phi);
 v_long = vx*sx0 + vy*sy0;
 v_lat = -vx*sy0 + vy*sx0;
 v_slip_lat = v_lat - 0;
 v_slip_long = v_long - R*w_roll;

 v_slip = sqrt(v_slip_long^2 + …
 -f_long*R = flange_a.tau;
 frame_a.t = 0;
 f = N*. S_Func(vAdhesion,vSlide,…
 f_long =f*v_slip_long/v_slip;
 f_lat =f*v_slip_lat/v_slip;
 f_long = frame_a.fx*sx0 + …
 f_lat = -frame_a.fx*sy0 + …

© Dirk Zimmer, December 2014, Slide 2

Robotics and Mechatronics Centre

+

In this lecture, we give an example of modeling a fully functional
real-time simulation. This concerns essentially three topics:

• Time-Integration for Real-Time and synchronization.

• Handling of User Input.

• Real-Time 3D Visualization.

Real-Time Simulation

© Dirk Zimmer, December 2014, Slide 3

Robotics and Mechatronics Centre

+

If we want to simulate something in real-time. The numerical ODE-
solver is subject to a few severe constraints.

• The solver must compute fast enough
 larger stepsizes or simple algorithms

• If the system is interactive, there is a maximum step-size
 favors simple algorithm.
 fixed step-size methods

• Each single integration step must be fast enough
 no solvers with indefinite number of iterations (avoid any non-

linearities)
 no events.
 no implicite solvers (will be explained after Christmas)

Time Integration

© Dirk Zimmer, December 2014, Slide 4

Robotics and Mechatronics Centre

+

The two-track car model seems to be suited
to be simulated in real time.

• Only linear-systems of equations (non-

linear solvers are not required)

• No events

• Limited stiffness.

Time Integration

torque

tau

pulse

period=2

ramp

duration=2

torque1

tau

© Dirk Zimmer, December 2014, Slide 5

Robotics and Mechatronics Centre

+

In Dymola, it is very easy to simulate the two-track model in real-time.

Time Integration

© Dirk Zimmer, December 2014, Slide 6

Robotics and Mechatronics Centre

+

In Dymola it is very easy to simulate the two-track model in real-time.

• We simply use the most simple solver that is available:

Forward Euler

• We use a fixed step-size of 1ms

• We may reduce the number of output values (since writing to the
disc can easily be more time-consuming that the actual
simulation…)

• In fact, we are much faster than real-time. We need to artificially
slow-down the simulation in order to synchronize with real-time.

Time Integration

© Dirk Zimmer, December 2014, Slide 7

Robotics and Mechatronics Centre

+

• For time synchronization, we need a special model.

• This model is contained in the Modelica Device Drivers Library
(developed by DLR)

• It slows down the simulation by calling a function that stays in an
idle loop.

Real-Time Synchronization

name

Normal

© Dirk Zimmer, December 2014, Slide 8

Robotics and Mechatronics Centre

+

The Synchronize Realtime
Block:

• The block simply calls an
Modelica function of the
DeviceDrivers Library.

Synchronize Realtime Block

block SynchronizeRealtime

 parameter Integer resolution(min = 1);
 parameter ProcessPriority p;
 output Real calculationTime;
 output Real availableTime;

equation

 when (initial()) then
 setProcessPriority(
 if (p == "Idle") then -2
 else if (p == "Below") then -1
 else if (p == "Normal") then 0
 else if (p == "High") then 1
 else if (p == "Realtime") then 2
 else 0);
 end when;

 (calculationTime,availableTime)
 =
 realtimeSynchronize(time,resolution);

end SynchronizeRealtime;

name

Normal

© Dirk Zimmer, December 2014, Slide 9

Robotics and Mechatronics Centre

+

The Synchronize Realtime
Block:

• The block simply calls an
Modelica function of the
DeviceDrivers Library.

Synchronize Realtime Function

function realtimeSynchronize
 input Real simTime;
 input Integer resolution = 1;
 output Real calculationTime;
 output Real availableTime;
 external "C" calculationTime =
OS_realtimeSynchronize(simTime,resolution,
availableTime);

annotation(Include = "
#ifndef MDDSYNC
#define MDDSYNC
#include <windows.h>
[…]

double OS_realtimeSynchronize(double simTime,
 int resolution, double * availableTime) {
 […]

 while((getTime(resolution)- startTime)/1000 <= simTime)
 {
 Sleep(0);
 }
 […]

}
 #endif

");
end realtimeSynchronize;

name

Normal

© Dirk Zimmer, December 2014, Slide 10

Robotics and Mechatronics Centre

+

• Also for the user interaction, we need a special input block.

• This block is contained in the Modelica Device Drivers Library
(developed by DLR)

• The Boolean output signals indicate when a certain key is pressed
down.

User Interaction

name

space

return

© Dirk Zimmer, December 2014, Slide 11

Robotics and Mechatronics Centre

+

The Keyboard Input Block:

• The block simply calls an
Modelica function of the
DeviceDrivers Library.

• It simply polls the current
state of the keyboard with a
given sample rate.

Keyboard Input Block

block KeyboardInput
 parameter Real sampleT = 0.01

 BooleanOutput keyUp;
 BooleanOutput keyDown;
 BooleanOutput keRight;
 […]

 Integer KeyCode[10];
 InputDevices.Keyboard keyboard;

equation
 when (sample(0,sampleT))then
 KeyCode = keyboard.getData();
 end when;

 keyUp = (KeyCode[1]==1);
 keyDown = (KeyCode[2]==1);
 keyRight = (KeyCode[3]==1);
 […]

end Frame;

name

space

return

© Dirk Zimmer, December 2014, Slide 12

Robotics and Mechatronics Centre

+

The Keyboard Input Block:

• On the right you see the
getData function that is
called to poll the keyboard
state.

• It calls an external C
function.

• The code is contained in the
annotation.

Keyboard Input Block

function getData

 output Integer KeyCode[10];

 external "C" KEY_getData(KeyCode);

 annotation (Include=“
#define VOID void
typedef char CHAR;
typedef short SHORT;
typedef long LONG;
#include <windows.h>
[…]
void KEY_getData(int * piKeyState)
{
 if(GetAsyncKeyState(VK_UP))
 piKeyState[0] = 1;
 else piKeyState[0] = 0;”);
[…]
“

end getData;

name

space

return

© Dirk Zimmer, December 2014, Slide 13

Robotics and Mechatronics Centre

+

• Using this input block, the user can only control in a Boolean way:
ON or OFF.

• To enable a more continuous control, we can filter the input signal.

• To this end, we apply the critical-Damping Filter from the Modelica
Standard Library.

Filtering User Input

keyboardInput

r?

criticalDamping
2

f=1

booleanToReal

B
R

© Dirk Zimmer, December 2014, Slide 14

Robotics and Mechatronics Centre

+ Filtering User Input

keyboardInput

r?

criticalDamping
2

f=1

booleanToReal

B
R

0.0 2.5 5.0 7.5 10.0 12.5 15.0
-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2
criticalDamping.u criticalDamping.y

© Dirk Zimmer, December 2014, Slide 15

Robotics and Mechatronics Centre

+

• This electrical circuit illustrates the functionality of the critical-
damping filter

• It can be regarded as RC lowpass filter with multiple stages (in our
case: 2)

Filtering User Input

...

...

{n elements

R=R

R1

R=R

R2

R=R

Rn

ground

C
=C

C
1

C
=C

C
2u

+
-

Vy

C
=C

C
n

© Dirk Zimmer, December 2014, Slide 16

Robotics and Mechatronics Centre

+

• Using critical damping
filters, I created a
control block for the
car model.

• Its outputs are the
breaking forces and
the driving and
steering torque.

Applying User Interaction

keyboardInput

s?

r?

bo
ol

ea
n?

B

R

ad
d

+1+1ad
d +

+1 +1

cr
itic

al
D

?
2 f=

1

bo
ol

ea
n?

B

R

criticalD
?

1f=0.5

boolean?
B

R

boolean?
B

R

add1

+1 +1 add1

+
+1+1

boolean?
B

R
criticalD?

2

f=1.5

add2

r?

add2

+
r?

boolean?
B

R
criticalD?

1

f=2

k=front?

gain

drivingTorque

f rontBrake

rearBrake

st
ee

rin
g

© Dirk Zimmer, December 2014, Slide 17

Robotics and Mechatronics Centre

+

• The forces and torques are
then applied on the car
model.

Applying User Interaction

torque

tau

torque1

tau

d=10

springDamper

c=10

fix
ed

synchro?

Normal

© Dirk Zimmer, December 2014, Slide 18

Robotics and Mechatronics Centre

+

torque

tau

torque1

tau

d=10

springDamper

c=10

fix
ed

synchro?

Normal

• The forces and torques are
then applied on the car
model.

• There is simple brake
model

• The steering is limited and
auto-centered by a spring-
damper system.

Applying User Interaction

© Dirk Zimmer, December 2014, Slide 19

Robotics and Mechatronics Centre

+

• Now we can steer and simulate our car model in real-time but this
makes hardly any fun, if we do not have a 3D real-time
visualization.

• The SimVis Library supports a real-time visualization in 3D. It has
been developed by DLR.

• SimVis is based on the OpenSceneGraph Technology that itself
uses the OpenGL standard.

• The SimVis library is conceptually similar to the DeviceDrivers
library. It provides a set of Modelica models that then call external
C-functions.

Visualization

© Dirk Zimmer, December 2014, Slide 20

Robotics and Mechatronics Centre

+

• OpenSceneGraph is an open
source implementation of the
scene graph technology.

• In the scene graph technology the
scene is describes as a graph.

• The visualization of the graph is
based on the OpenGL 2.1 standard.

• For the online-visualization, all we
need to do is to update the graph.

OpenSceneGraph

© Dirk Zimmer, December 2014, Slide 21

Robotics and Mechatronics Centre

+

The SimVis Library contains various elements:

• Shapes

• Cameras

• Lights

SimVis Structure

© Dirk Zimmer, December 2014, Slide 22

Robotics and Mechatronics Centre

+

The SimVis Library contains various elements:

• Shapes

• Cameras

• Lights

SimVis Structure

 All these elements use

the Frame Connector
form the MultiBody

library.

 Hence they can simply
be used like MultiBody

components.

© Dirk Zimmer, December 2014, Slide 23

Robotics and Mechatronics Centre

+

fix
?

ba? toC?
r={0?
a b

fix
?

a b
n={0,?roll m=?

dyn?

d=d_?

rollSpri?

c=c_?

a b
n={1,?pitch

d=d_?

pitchSp?

c=c_? chassis
fixe?

r={0,?
a

b

co
ns

t

k=
0

const1

k=0

const2

k=0

co
ns

t3

k=
0

dy
na

m
ic

Lo
ad

R
F

dy
na

m
ic

Lo
ad

LF

dynam
icLoadR

R

dynam
icLoadLR

• The visualization of the
wheels is integrated into
the chassis model

Applying SimVis

© Dirk Zimmer, December 2014, Slide 24

Robotics and Mechatronics Centre

+

• The visualization of the wheels is integrated into the axis model

Applying SimVis

W?inertia1

J=I

f ix?
W? inertia2

J=I

f ix?

le
ftT

ire

rig
ht

Ti
re

fix
e?

r=
{0

,?
a

b

fix
e?

r=
{0

,?
a

b

a
b

n=
{0

,?
re

vo
lu

te

a
b

n=
{0

,?
re

vo
l?

f la?

fla?fla?

dynam
icLoadLeft

dynam
icLoadR

ight

© Dirk Zimmer, December 2014, Slide 25

Robotics and Mechatronics Centre

+

torque

tau

world

x

ytorque1

tau

a
b

ca
m

er
a

D
yn

. f
?

f ixedTransl?

r={2,8.5,1.7}

a b

shape1fixed1

r={0,0,0}

f ixedTransl?

r={0,-1,1}

a b

lightlightfixed2

r={0,500,100}

light1

d=10

springDamper

c=10

fix
ed

• Lights and Landscape are
added to form the
complete scene.

• A dynamic follow camera
is attached to the rear
end of the car pointing to
the nose.

Applying SimVis

© Dirk Zimmer, December 2014, Slide 26

Robotics and Mechatronics Centre

+

• And voila!

• We’re done! Almost… the rest is your task in Exercise 9.

Finally….

Questions ?

	Virtual Physics�Equation-Based Modeling
	Real-Time Simulation
	Time Integration
	Time Integration
	Time Integration
	Time Integration
	Real-Time Synchronization
	Synchronize Realtime Block
	Synchronize Realtime Function
	User Interaction
	Keyboard Input Block
	Keyboard Input Block
	Filtering User Input
	Filtering User Input
	Filtering User Input
	Applying User Interaction
	Applying User Interaction
	Applying User Interaction
	Visualization
	OpenSceneGraph
	SimVis Structure
	SimVis Structure
	Applying SimVis
	Applying SimVis
	Applying SimVis
	Finally….
	Questions ?

