Dr. Dirk Zimmer

Virtual Physics

10.11.2015

Exercise 2: Doing it the hard way

Solution

Task 1: Punch the equations into Modelica and simulate the model using Dymola

Here is the Modelica Code

¢ is replaced by phi
o is replaced by w
a is replaced by z

T 1s replaced by t

model Exercise2
parameter Real MS = 250;
parameter Real MP = 70;
parameter Real R = 2.5;
parameter Real I = MP*R"2;
parameter Real G =-9.81;
Real s;
Real v;
Real aS;
Real fS;
Real phi;
Real w;
Real z;
Real t;
Real fn;
Real fz;
Real fP;
Real aP;
initial equation
s=0;
v=0;
phi=1.25;
w =0;
equation
aS = der(v);
v = der(s);
fS = MS*aS;
z = der(w);
w = der(phi);
t=1%z
t=fn*R;
fn = MP*(sin(phi)*G - cos(phi)*aP);
fz = MP*R*w"2;
fP + sin(phi)*fz - cos(phi)*fn - MP*aP = 0;
aP =aS;
fP + fS=0;
end Exercise2;



Task 2: Generate the simulation code by yourself.

Now let us derive the state-space form. We can do that partly in Modelica. First, we separate
the differential equations. By this, we see that s, v, phi, w form the states of our system. These
variables can be supposed to be known. Hence, ¥z can be directly computed by the term:
MP*R*w/2;

The remaining 7 equations can be simplified, we substitute aS and aP by a and remove the
equation aS = aP. We also substitute TP by —FS and remove the equation: fP + S =
0.

a = der(v);

v = der(s);

z = der(w);

w = der(phi);
fz = MP*R*w"2;

fS = MS*a;

t=1%z

t=fn*R;

fn = MP*(sin(phi)*G - cos(phi)*a);

-fS + sin(phi)*{z - cos(phi)*fn - MP*a = 0;

This model still leads to the same simulation result. We can simplify it further. We substitute
away all forces (except the already determined force ¥z). To this end, we replace S by
MS*a and t by 1*z. It results that 1*z = Fn*R. Hence we can substitute any occurrence
of fn by 1/R*z or better: MP*R*z. Now a system of two equations remains to be solved
for a and z.

a=der(v);

v = der(s);

z = der(w);

w = der(phi);
fz = MP*R*w"2;

R*z = sin(phi)*G - cos(phi)*a;
-MS*a + sin(phi)*{z - cos(phi)*MP*R*z - MP*a = 0;

If we substitute R*z by (sin(phi)*G - cos(phi)*a), we get:
-MS*a + sin(phi)*fz - cos(phi)*MP* (sin(phi)*G - cos(phi)*a) - MP*a = O0;

This equation only depends on state-variables or from variables that can be directly derived
out of the stage (FZz). It can be solved for a:

a = (sin(phi)*fz - cos(phi)*sin(phi)*MP*G) / (MS + MP*(1-cos(phi)"2));
Z is now simply determined by backward substitution as:

z = (sin(phi)*G - cos(phi)*a)/R;



We have transformed the equations into state-space form. Given the state-vector
(s,Vv,phi ,w), we can compute the derivatives by the following causal assignments:

fz = MP*R*w*w;
a = (sin(phi)*fz - cos(phi)*sin(phi)*MP*G) / (MS + MP*(1-cos(phi)*cos(phi)));
z = (sin(phi)*G - cos(phi)*a)/R;

der(v) := a;
der(s) := v;
der(w) := z;
der(phi) := w;

Applying the Forward Euler discretization scheme leads to the following Python code:

#1/usr/bin/env python3
# Author Dirk Zimmer (c) 2011

from math import *

#Setting the parameters

MS = 250.0 #mass of the motocycle [kg]
MP = 70.0 #mass of the swing [kg]
=2.5 #Radius of the swing [m]

= -9.81 #Gravity acceleration

phi0 = 1.25 #Initial elongation [rad]

h = 0.001 #time-step of forward Euler integration [s]
tStop = 5 #stop time [s]

#Setting the initial values

s=0

v=20

phi = phiO

w =20

time = 0

#open file for ouput
fh = open(“out.dat™,"w"™)

#perform time-integration

while time < tStop:
fz = MP*R*w*w;
a (sin(phi)*fz-cos(phi)*sin(phi)*MP*G)/(MS+MP*(1-cos(phi)*cos(phi)));
z (sin(phi)*G - cos(phi)*a)/R;

dv_dt
ds_dt
dw_dt
dphi_dt

I
InNN<©®

w

Vv += h*dv_dt
s += h*ds_dt
w += h*dw_dt
phi += h*dphi_dt

time += h
print(time,”\t",v,"\t",w, File=fh)

print(*'See out.dat for simulation result'™)

fth_close()



