

otential and Flow The Robotics and Mechatic				
For the mechanical domain, the first two are relevant:				
Domain	Potential Flow			
Translational Mechanics	Velocity: v [m/s]	Force: <i>f</i> [N]		
Rotational Mechanics	Angular Velocity: ω [1/s]	Torque: τ [Nm]		
Electrics	Voltage Potential v [V]	Current i [A]		
Magnetics	Magnetomotive Force: Θ [A]	Time-derivative of Magnetic Flux: $\dot{\Phi}$ [V]		
Hydraulics	Pressure p [Pa]	Volume flow rate V [m ³ /s]		
Thermal	Temperature T[K]	Entropy Flow Rate S [J/Ks]		
Chemical	Chemical Potential: µ [J/mol]	Molar Flow Rate v [mol/s]		
© Dirk Zimmer, November 20:				

Potential and Flow

For each physical domain, there is a specific pair of effort / flow variables

ТШП

Robotics and Me

1

Domain	Potential	Flow
Translational Mechanics	Velocity: v [m/s]	Force: f[N]
Rotational Mechanics	Angular Velocity: ω [1/s]	Torque: τ [Nm]
Electrics	Voltage Potential v [V]	Current i [A]
Magnetics	Magnetomotive Force: Θ [A]	Time-derivative of Magnetic Flux: Φ [V]
Hydraulics	Pressure p [Pa]	Volume flow rate V [m ³ /s]
Thermal	Temperature T[K]	Entropy Flow Rate S [J/Ks]
Chemical	Chemical Potential: μ [J/mol]	Molar Flow Rate v [mol/s]
		© Dirk Zimmer, November 201

Holonomic Constraints

© Dirk Zimmer, November 2017, Slide

• No, the table is correct but the correct formulation of mechanical system adds another requirement:

The formulation of holonomic constraints!

- Holonomic Constraints are algebraic constraints on the level of position.
- A rigid rod describes a given distance between two flanges. Here two positions are bound with one constraint equation.
- In order, to formulate such equations correctly, the position needs to be part of the connector.

Holonomic Constraints	Example + +
Here is a handwritten Modelica- code for this example:	<pre>model TwoSpringsWithConstraint Real s1; Real s2; Real v1;</pre>
 The two variables s1_int and s2_int are used to formulate the constraints. 	<pre>Real v2; Real f; parameter Real m1 = 10; parameter Real m2 = 2; Real s1_int; Real s2_int; couption</pre>
• On the next slide you see the simulation result (the positions of the two masses).	<pre>equation v1 = der(s1); v2 = der(s2); -1*s1 + f = m1*der(v1); -20*(s2-5) - f*abs(s2_int)*2 = m2*der(v2);</pre>
	<pre>s1 = s1_int; s2 = s2_int; s1_int = abs(s2_int)*s2_int; end TwoSpringsWithConstraint; @ DirkZimmer, November 2017, Side 10</pre>

Holonomic Constraints: Example

 What has happened? Why does the system behave differently? 	<pre>model TwoSpringsWithConstraint Real s1;</pre>
 Since s1 and s1_int are not algebraically coupled, they are separately integrated. 	Real s2; Real v1; Real v2; Real f; parameter Real m1 = 10;
• The same holds for s2 and s2_int.	<pre>parameter Real m2 = 2; Real s1_int;</pre>
 Hence, the holonomic constraints becomes subject to an increasing numerical integration error. 	<pre>Real s2_int; equation v1 = der(s1); v2 = der(s2);</pre>
This can drastically change the systems behavior.	-1*s1 + f = ml*der(v1); -20*(s2-5) - f*abs(s2_int)*2 = m2*der(v2);
	<pre>v1 = der(s1_int); v2 = der(s2_int); s1_int = abs(s2_int)*s2_int; end TwoSpringsWithConstraint;</pre>

Holonomic Constraints

© Dirk Zimmer, November 2017, Slide 1

ТШП

DLR

- For our mechanical components, this means that we have to use positions as potential variables:
- Each node was represented by a pair of variables

A potential variable

- s (position for translational mechanics)
- φ (angle for rotational mechanics)

and a flow variable

f (force for translational mechanics)

 τ (force for rotational mechanics)

© Dirk Zimmer, November 2017, Slide 1

Dry Friction: S-Function	Robotics and Mechatronics Centre
 For the S-Function, we use a polynomial: 	<pre>function S_Func "Models an S-Function" input Real x_min; input Real x_max;</pre>
$y = -x^{3}/2 + 3x/2$	<pre>input Real y_min; input Real y_max; input Real x; output Real y;</pre>
 Then, we provide inputs in order to scale the function to fit an arbitrary rectangle (x_min, y_min, x_max, y_max) 	<pre>protected Real x2; algorithm x2 := x - x_max/2 - x_min/2; x2 := x2*2/(x_max-x_min); if x2 > 1 then y := 1; </pre>
 The annotation tells Dymola that the function is differentiable once. So they are no discontinuities. 	<pre>y := 1; elseif x2 < -1 then y := -1; else y := -0.5*x2^3 + 1.5*x2; end if; y := y*(y_max-y_min)/2;</pre>
This is important for the ODE- solver.	<pre>y := y + y_max/2 + y_min/2; annotation(smoothOrder=1); end S_Func;</pre>

Summary

- Rotational and translational mechanics can be treated he same way.
- The proper formulation of mechanical systems requires the formulation of holonomic constraints.
- In order to enable this, positions and not velocities form the potential connector variables.
- Consequently, the derivatives are redistributed within the components.
- We learnt about dry friction and regularization.

© Dirk Zimmer, November 2017, Slide 41

