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Exercise 7:  2D-Mechanics: Ideal rolling wheel 

Solution 

 

Task A: Develop a component for an ideal wheel joint.  

name
 

Since this component has only one connector with 3 effort-flow pairs, we need 3 equations 

to describe the dynamic behavior. But first, let us declare a few auxiliary variables with their 

corresponding equations: 

  phi = frame_a.phi; 
  w = der(phi); 
  z = der(w); 
  vx = der(frame_a.x); 

 

Now, we can add the three missing equations that describe the physical behavior: 

  //holonomic constraint equation for the position of the wheel (It cannot move vertically) 
  frame_a.y = R; 
  //non-holonomic constraint equation for the ideal rolling (horizontal movement) 
  vx = w*R; 
  //the balance of force and torque 
  frame_a.fx*R = -frame_a.t; 

 



Modelling the initialization is a little more tricky, since due to non-holonomic constraint we 

have more states at the level of position (x and phi) than at the level of velocity (vx or w). 

Hence we need 3 equations for a full initialization. 

if initialize then 
  phi = phi_start; 
  w = w_start; 
  frame_a.x = x_start; 
end if; 

 

For the visualization, a disc and two rods have been chosen. Using MB.Frames.planarRotation 

enables us to avoid the computation of the rotation by hand. 

Final Remark: Since this component is rolling just in one-dimension, it is possible to replace 

the non-holonomic constraint by a holonimc one: 

  //non-holonomic constraint equation for the ideal rolling 
  vx = w*R;   frame_a.x = phi*R; 

 

For the full solution, see PlanarMechanicsV3.mo 

 

Task B: Test your component 

See: PlanarMechanicsV3.mo (Examples.WheelBasedCraneCrab) 

 

Task C: Model a rigid wheel with dry friction 

First, we have to add the required parameters of the dry-friction model: 

  parameter SI.Velocity vAdhesion "adhesion velocity"; 
  parameter SI.Velocity vSlide "sliding velocity"; 
  parameter Real mu_A "friction coefficient at adhesion"; 
  parameter Real mu_S "friction coefficient at sliding"; 

 

Then we have to replace the non-holonomic constraint equation by the friction law. To this 

end, we replace one equation by three equations and two additional variables  (v_slip, N) 

  v_slip = vx - w*R; 
  N = -frame_a.fy; 
  frame_a.fx = N*noEvent(Utilities.TripleS_Func(vAdhesion,vSlide,mu_A,mu_S,v_slip)); 

 

The normal force is represented by -frame_a.fy and results from the holonomic constraint 

equation. The normal force becomes negative when the wheel is torn off the ground (or if 

gravity would point upwards…) The slip velocity v_slip represents a reformulation of the 

former non-holonomic constraint. The dry-friction law has been used before many times. 



Since the non-holonomic constraint equation has been removed there are now 4 potential 

states to be initialized: 

  //Initialization of Position and Velocity 
  if initialize then 
    phi = phi_start; 
    w = w_start; 
    frame_a.x = x_start; 
    vx = vx_start; 
  end if; 

 

For the complete solution and an application example see PlanarMechanicsV3.mo 

(Examples.CounterSpin) 

 

Task D: Apply Pantelides Algorithm  

Transform the following system of differential-algebraic system into state-space form. 

dx/dt = 5 * z * b 

dy/dt = a 

2 * dz/dt = b 

b = y * x 

y = 1 – x 

a = c – d 

d/2 = b 

Causalize each equation and transform the set of equations into a sequence of assignments. You may 

differentiate equations if necessary.  

 

First, let us identify the potential states by looking at the time-derivatives:  

These are x, y and z. We can hence assume them to be known. There are no further inputs 

specified and time itself does not occur. Hence these are also the only a-priori knowns. 

We start with forward casualization and look for the equation with the least unknows. This is 

y = 1 – x 

with 0 unknowns.  It does represent a constraint between the two states. We choose to 

remove y from the set of states and it becomes unknown. Also we add the time derivative of 

the constraint to the set of equations: dy/dt = -dx/dt 

 



We restart forward causalization by iteratively looking for the equation with the least 

amount of unknowns: 

y := 1 – x 

b := y * x 

d := 2*b 

dz/dt := b/2 

dx/dt := 5 * z * b 

dy/dt := -dx/dt 

a := dy/dt 

c := a + d 

 

This is it. At each iteration there was at least one equation with exactly 1 unknown but no 

residual equation with 0 unknowns. Everything can simply be causalized. 

 

 

 

 

 


