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Equation-based modeling: first steps

equation

sx0 = cos(frame_a.phi)*sx_norm + …

sy0 = -sin(frame_a.phi)*sx_norm + …

vy = der(frame_a.y);

w_roll = der(flange_a.phi);

v_long = vx*sx0 + vy*sy0;

v_lat = -vx*sy0 + vy*sx0;

v_slip_lat = v_lat - 0;

v_slip_long = v_long - R*w_roll;

v_slip = sqrt(v_slip_long^2 + …

-f_long*R = flange_a.tau;

frame_a.t = 0;

f = N*. S_Func(vAdhesion,vSlide,…

f_long =f*v_slip_long/v_slip;

f_lat =f*v_slip_lat/v_slip;

f_long = frame_a.fx*sx0 + …

f_lat = -frame_a.fx*sy0 + …
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• Let us start with a simple modeling example:

Let us brew beer! (or ferment wine.. for the non-ba(rb/v)arians)

• In this example, we are going to model the fermentation of sugar into 
alcohol and the corresponding growth and decay of yeast.

• In the process of fermentation each molecule of sugar is transformed 
into two molecules of alcohol (plus 2 CO2)

C6H12O6 → 2 C2H5OH +  2 CO2

Modeling Example
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• These are our model variables:

• Population of yeast: p

• Birth-Rate: b

• Death-Rate: d

• Concentration of sugar: s

• Concentration of alcohol: a

• Consumption of sugar: f

• Current Temperature: T

Variables and Parameters

• These are our model parameters:

• Volume of vessel: V = 1

• Initial concentration of sugar: 
s0 = 0.2

• Initial population of yeast: 
p0 = 0.001

• Feeding-Rate Coefficient: Cf

• Reproductivity: R

• Sensitivity to poison:  S

• Reference Temperature: Tref
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Let us start with the algebraic equations:

• The consumption of sugar (f) is proportional to concentration of sugar (s) 
multiplied by the population of yeast (p). The proportionality is 
determined by the feeding-rate (Cf) and the temperature (T)

f = s ∙ p ∙ Cf ∙ (T/Tref) 

• Roughly half of the molecular mass of the sugar is transformed into 
alcohol, but alcohol has a much lower density. Hence we make the 
(incorrect) simplifying assumption:

a = s0 – s

with s0 being s at t=0

Algebraic Equations
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Let us continue with the algebraic equations:

• The Birth-Rate is proportional to concentration of sugar (s).  The 
proportionality is determined by the reproduction (R):

b = R ∙ s

• The Death-Rate is dependent on the level of poisonous alcohol (a) and 
the sensitive (S) of the yeast.

d = S ∙ a

Algebraic Equations
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The algebraic equations are:

f = s ∙ p ∙ Cf ∙ (T/Tref) 

a = s0 – s

b = R ∙ s

d = S ∙ a

T is determined from outside (input-variable)

Algebraic Equations
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The differential equations describe the change over time:

• The change in population (dp/dt) equals the birth-rate (b) minus the 
death rate (d) and is proportional to the current population (p):

dp/dt = p ∙ (b-d)

• The change in concentration of sugar (ds/dt) multiplied by the Volume 
(V) equals the negative consumption rate (f) of sugar :

V ∙ ds/dt = -f

or

ds/dt = -f/ V

Differential Equations
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The differential equations are:

dp/dt = p ∙ (b-d)

ds/dt = -f/V

Differential Equations
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Let us plug in the algebraic equations:

dp/dt = p ∙ (b-d)

ds/dt = -f/V

Differential Equations
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Let us plug in the algebraic equations:

dp/dt = p ∙ (b-d)

dp/dt = p ∙ (R∙s - S∙a)

ds/dt = -f/V

Differential Equations
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Let us plug in the algebraic equations:

dp/dt = p ∙ (b-d)

dp/dt = p ∙(R∙s - S∙a)

dp/dt = p ∙(R∙s - S∙(s0-s))

ds/dt = -f/V

Differential Equations
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Let us plug in the algebraic equations:

dp/dt = p ∙ (b-d)

dp/dt = p ∙(R∙s - S∙a)

dp/dt = p ∙(R ∙ s - S ∙(s0-s))

dp/dt = p ∙((R+S)∙s - S∙s0)

ds/dt = -f/V

Differential Equations
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Let us plug in the algebraic equations:

dp/dt = p ∙ (b-d)

dp/dt = p ∙ (R∙s - S∙a)

dp/dt = p ∙(R∙s - S∙(s0-s))

dp/dt = p ∙((R+S)∙s - S∙s0)

ds/dt = -f/V

ds/dt = -s ∙ p ∙ Cf ∙ (T/Tref) ∙ 1/V

Differential Equations
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Let us plug in the algebraic equations:

dp/dt = p ∙((R+S)∙s - S∙s0)

ds/dt = -s ∙ p ∙ Cf ∙ (T/Tref) ∙ 1/V

Differential Equations
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• Let us discretize the advance of time by the quantum h:

• Given xt , we can compute xt+h by using the Taylor-series expansion:

xt+h = xt + (dx/dt)t ∙ h + (dx /dt2)t ∙ (h
2/2) + (dx /dt3)t ∙ (h

3/6) + …

• Let us drop all higher derivatives. We get:

xt+h = xt + (dx/dt)t ∙ h

• This discretization scheme is called: Forward Euler

Time Discretization
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Let us apply Forward Euler to our differential equations:

pt+h = pt + (dp/dt)t ∙ h 

with

(dp/dt)t = pt ∙((R+S)∙st - S∙s0)

st+h = st + (ds/dt)t ∙ h 

with  

(ds/dt)t= -st ∙ pt ∙ Cf ∙ (Tt/Tref) ∙ 1/V

Time Discretization
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• These four explicit equations are used to perform a simulation:

pt+h = pt + (dp/dt)t ∙ h with (dp/dt)t = pt ∙((R+S) ∙ st - S ∙ s0)

st+h = st + (ds/dt)t ∙ h with  (ds/dt)t= -st ∙ pt ∙ Cf ∙ (Tt/Tref) ∙ 1/V

• We can simply punch them into a Phyton3 script:

• Here, there are computed within a loop. Each iteration represents one 
time-step: an advance of h in time.

Simulation

while time < 10:

dp_dt = p*((R+S)*s - S*s0)

ds_dt = -s*p*C_f*(T/T_ref)*1/V

p += h*dp_dt

s += h*ds_dt

a = s0-s

time += h

print(time,"\t",p,"\t",s,"\t",a)
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This is the complete Phyton3-Script:

Simulation Code

#!/usr/bin/env python3

#Setting the parameters

V = 1  #volume of fermentation vessel

s0 = 0.2 #inital concentration of sugar

p0 = 1e-6 #initial population of yeast [m3]

C_f = 50 #feeding Coefficient [1/day]

R = 10 #reproductivity [1/day]

S = 15 #sensitivity w.r.t. alcohol [1/day]

T_ref = 300 #reference temperature [K]

h = 0.01 #time-step of forward Euler integration

#Setting the initial values

p = p0

s = s0

a = s0 - s;

time = 0

#Setting the input-value
T = 310

#perform time-integration
while time < 10:

dp_dt = p*((R+S)*s - S*s0)

ds_dt = -s*p*C_f*(T/T_ref)*1/V

p += h*dp_dt

s += h*ds_dt

a = s0-s

time += h

print(time,"\t",p,"\t",s,"\t",a)
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• And this is the result for the yeast population:

Simulation Results
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• Concentration of sugar and alcohol:

Simulation Results
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Interpretation of the simulation results:

• The population of yeast first grows exponentially. There seems to be an 
endless supply of sugar available.

• Then the population has reached a critical level and the concentration of 
sugar and alcohol are rapidly changing.

• Then, there is a sudden die-off due to the combination of starvation and 
self-poisoning.

Simulation Results
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Let us look at the computational structure of our model. We can classify our 
variables into vectors of…

• Input Variables:  u = (T)

• State Variables:  x = (p, s)

• State Derivatives: dx/dt = (dp/dt, ds/dt)

• Output Variables: y = (a)

• The system was then transformed into two functions:

dx/dt = f(x,u,t)

y = g(x,u,t)

• This specific form is called: state-space form

State-Space Form
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• We form a row vector out of x,u, and t: (p,s,T,t)

• We form a column vector out of dx/dt and y: (dp/dx, ds/dx, a)

• Now we can represent the dependences of our computational structure 
by a Boolean incidence matrix.

State-Space Form

p s T t

dp/dt X X

ds/dt X X X

a X

dp/dt = p∙ ((R+S) ∙s - S∙s0)

ds/dt = -s∙p∙Cf∙ (T/Tref) ∙ 1/V

a = s0 – s

dx/dt

y

f(…)

g(…)

x (u, t)
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• The incidence matrix can be decomposed into four blocks: A, B, C, D.

• If g(…) and f(…) represent linear functions (not the case here!), the 
system can indeed be expressed by real-valued matrices:

dx/dt = Ax + B(u, t)

y = Cx + D(u, t)

State-Space Form

p s T t

dp/dt X X

ds/dt X X X

a X

A B

C D
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Let us summarize the development process of our simulation:

• First, we had to analyze our model and select the variables of 
interest.

• Then, we formulated a set of differential-algebraic equations
(DAEs).

• Next, we had to transform this set of expressions into a 
computable/solvable form (state-space form).

• Finally, a time-discretization scheme was applied and a 
numerical integration could be performed (numerical ODE-
solver).

Summary
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Even for this small and rather trivial example, this development 
process was rather laborious.

• Larger models cause much more work.

• Also there are more complicated models that are difficult to 
transform into state-space form.

• If we change the model, the complete process has to be 
redone.

• Programming a simulation manually turns out to be very 
inconvenient and is also very error-prone.

• For these reasons, a number of computer languages have been 
developed that aim to automate this process.

• Let us take a look back in history…

Deficiencies
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• The language MIMIC was 
developed mainly for the 
Control Data super-computers 
in 1964.

• The listing presents the MIMIC 
code for the simulation of a 
swinging pendulum.

• Successors of these language 
were CSMP and ACSL. They 
prevailed up to the 80s.

MIMIC (History)

CON(G) Declaration of constants

PAR(1X0,X0) Declaration of parameters

DT 0.05 Definition of time step

1X INT(-G*Z,1X0) Integration 

X INT(1X,X0) 

Y 1.-COS(X) Equation for y position

Z SIN(X) Equation for z position

FIN(T,4.9) Command for integration

PLO(T,X,Y,Z) Commands for plotting

ZER(0.,-5,0.,-1)

SCA(5.,5.,2.,1.)

END End of program
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CDC 6600

• 40 MHz, roughly 1MFLOPS, 64K 60-bit words of memory

• Roughly 400´000 transistors, over 100 miles of wiring

• A predecessor of the RISC-Architecture. Developed by Seymour Cray

• Prize: 7 – 10 Million $ (and by that time, the dollar was worth something)

MIMIC
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• The model could be formulated 
by assignments and integrators.

• These model “equations” could 
be arbitrarily ordered.

• The appropriate order for the 
state-space form is 
automatically derived.

• The time-discretization is not 
part of the model anymore. 
Different numerical ODE-solvers 
can be applied (better than FE)

MIMIC (Advantages)

CON(G) Declaration of constants

PAR(1X0,X0) Declaration of parameters

DT 0.05 Definition of time step

1X INT(-G*Z,1X0) Integration 

X INT(1X,X0) 

Y 1.-COS(X) Equation for y position

Z SIN(X) Equation for z position

FIN(T,4.9) Command for integration

PLO(T,X,Y,Z) Commands for plotting

ZER(0.,-5,0.,-1)

SCA(5.,5.,2.,1.)

END End of program
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• MIMIC could not handle real 
equations, only causal 
assignments.

• There were hardly any means 
to structure the program. The 
language was almost 
completely flat and there is 
only one global namespace.

MIMIC (Deficiencies)

CON(G) Declaration of constants

PAR(1X0,X0) Declaration of parameters

DT 0.05 Definition of time step

1X INT(-G*Z,1X0) Integration 

X INT(1X,X0) 

Y 1.-COS(X) Equation for y position

Z SIN(X) Equation for z position

FIN(T,4.9) Command for integration

PLO(T,X,Y,Z) Commands for plotting

ZER(0.,-5,0.,-1)

SCA(5.,5.,2.,1.)

END End of program
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• The Dynamic Modeling Language 
was developed by Hilding Elmquist 
in 1978.

• The listing on the left displays the 
code of an assembled electric 
circuit and of its capacitor 
component.

Dymola

model type capacitor

cut A (Va / I) B (Vb / -I)

main cut C [A B]

main path P <A - B>

local V

parameter C

V = Va -Vb

C*der(V) = I

end

model Network

submodel ( resistor ) R1 R2

submodel ( capacitor ) C

submodel ( current ) F

submodel Common

input i

output y

connect Common to F to R1 to (C par R2) 

to Common

E.I = i

y = R2.Va

end
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• Dymola is a declarative language. 
It only contains code for the 
model-equations. The simulation is 
completely decoupled from the 
model description.

• This language enabled the 
formulation of  hierarchic elements 
such as sub-components.

• These components could be 
automatically connected.

Dymola

model type capacitor

cut A (Va / I) B (Vb / -I)

main cut C [A B]

main path P <A - B>

local V

parameter C

V = Va -Vb

C*der(V) = I

end

model Network

submodel ( resistor ) R1 R2

submodel ( capacitor ) C

submodel ( current ) F

submodel Common

input i

output y

connect Common to F to R1 to (C par R2) 

to Common

E.I = i

y = R2.Va

end



© Dirk Zimmer, October 2022, Slide 33

Robotics and Mechatronics Centre

+

• Dymola can handle non-causal 
equations such as u = R*i

• In R1, the causality is: u := R*i

• In R2, the causality is: i := u/R

• In Dymola, one can use the same, 
non-causal equations for both 
resistor components.

Dymola

model type capacitor

cut A (Va / I) B (Vb / -I)

main cut C [A B]

main path P <A - B>

local V

parameter C

V = Va -Vb

C*der(V) = I

end

model Network

submodel ( resistor ) R1 R2

submodel ( capacitor ) C

submodel ( current ) F

submodel Common

input i

output y

connect Common to F to R1 to (C par R2) 

to Common

E.I = i

y = R2.Va

end
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• Dymola never had any real impact in industry, it remained within 
academia.

• There, its main ideas were preserved and extended by Omola. 
This language enables a truly object-oriented modeling, featuring 
inheritance, wrapping etc.

• Modeling in Omola was also performed graphically. Only the 
fundamental equations are entered in textual form. All higher-
level model are assembled graphically.

• Also Omola remained within academia. Things started to change 
as Modelica was born in 1997.

Omola
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Demonstration

Modelica
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• As you see: Dymola is still alive, 
but not as modeling language 
but as an M&S environment for 
Modelica.

• In Modelica, we can directly 
punch in our model equations. 

• There is no need anymore to 
derive the state-space form by 
paper and pencil.

Modelica

model Yeast
parameter Real V = 1 "volume of fermentation vessel";
parameter Real s0 = 0.2 "initial concentration of sugar";
parameter Real p0 = 1e-6 "initial population of yeast";
parameter Real C_f = 50 "Feeding Coefficient [1/day]";
parameter Real R = 10 "Reproductivity [1/day]";
parameter Real S = 15 "Sensitivity w.r.t. alcohol [1/day]";
parameter Real T_ref = 300 "reference temperature";
Real p "population of yeast";
Real b "birth rate";
Real d "death rate";
Real s "concentration of sugar";
Real a "concentration of alcohol";
Real f "consumption of sugar (feeding)";
Real T "current temperature";

initial equation
p = p0;
s = s0;

equation
f = s * p * C_f * (T/T_ref);
a = s0 - s;
b = R * s;
d = S * a;
T = 310;
der(p) = p*(b-d);
V*der(s) = -f;

end Yeast;
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State-Space Form

Numerical ODE-Solver

Causalized Equations

Non-causal DAEs

Hiearchical, Object-
Oriented Models

MIMIC

Dymola

Modelica

Manual 
Implementation

Modeling

Simulation

• In the field of programming 
languages, there are high-
level languages (Phyton, C++) 
and low-level languages 
(Assembler)

• The same is true for modeling 
languages.

• The state-space form is a 
common target of their 
compilation scheme (the 
Assembler language of a 
modeler).
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+Modeling and Simulation

State-Space Form

Numerical ODE-Solver

Causalized Equations

Non-causal DAEs

Hiearchical, Object-
Oriented Models

MIMIC

Dymola

Modelica

Manual 
Implementation

Modeling

Simulation

• The first (and larger) part of 
the lecture concerns the 
modeling side.

• You will learn to model in 
Modelica using the software 
Dymola.
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+Modeling and Simulation

State-Space Form

Numerical ODE-Solver

Causalized Equations

Non-causal DAEs

Hiearchical, Object-
Oriented Models

MIMIC

Dymola

Modelica

Manual 
Implementation

Modeling

Simulation

The way up:

• To this end, we have to learn 
how to formulate the laws of 
physics in an object-oriented 
way.
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State-Space Form

Numerical ODE-Solver

Causalized Equations

Non-causal DAEs

Hiearchical, Object-
Oriented Models

MIMIC

Dymola

Modelica

Manual 
Implementation

Modeling

Simulation

The way up:

• To this end, we have to learn 
how to formulate the laws of 
physics in an object-oriented 
way.

• This is a sole matter of 
physics. It has nothing to do 
with computer science. 
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State-Space Form

Numerical ODE-Solver

Causalized Equations

Non-causal DAEs

Hiearchical, Object-
Oriented Models

MIMIC

Dymola

Modelica

Manual 
Implementation

Modeling

Simulation

The way down:

• Then we have to learn how 
the languages are compiled, 
and how the state-space form 
is automatically derived.
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State-Space Form

Numerical ODE-Solver

Causalized Equations

Non-causal DAEs

Hiearchical, Object-
Oriented Models

MIMIC

Dymola

Modelica

Manual 
Implementation

Modeling

Simulation

The way down:

• Then we have to learn how 
the languages are compiled, 
and how the state-space form 
is automatically derived.

• This is a sole matter of 
computer science. It has 
nothing to do with physics.
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State-Space Form

Numerical ODE-Solver

Causalized Equations

Non-causal DAEs

Hiearchical, Object-
Oriented Models

MIMIC

Dymola

Modelica

Manual 
Implementation

Modeling

Simulation

The way down:

• Then we have to learn how 
the languages are compiled, 
and how the state-space form 
is automatically derived.

• This is a sole matter of 
computer science. It has 
nothing to do with physics.

• (And by the way, we are going 
to model a lot of cool 
systems…)
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State-Space Form

Numerical ODE-Solver

Causalized Equations

Non-causal DAEs

Hiearchical, Object-
Oriented Models

MIMIC

Dymola

Modelica

Manual 
Implementation

Modeling

Simulation

• The second (and smaller) part 
of this lecture series concerns 
simulation.

• You will learn different 
techniques how to implement 
numerical ODE solvers, and 
how they influence the 
simulation result.

• In addition, the handling of 
events will be discussed.
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State-Space Form

Numerical ODE-Solver

Causalized Equations

Non-causal DAEs

Hiearchical, Object-
Oriented Models

MIMIC

Dymola

Modelica

Manual 
Implementation

Modeling

Simulation
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+Model-based development

System Dynamics Model

Control Design

Early Design Optimization

Model-Based Algorithms: e.g. Health Monitoring

Embedded Models

Requirements Modeling

Certified, Distributed Model Code

Model-based Safety Analysis

Integration of Data and Tools
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+Future Trends

• Focus on Simulation

• ODE-based

• Numerical Solvers
70s/80s

• Focus on Modeling

• DAE-based

• Model Compiler Technology
90s/00s

• Focus on Tool-Integration 

• Based on Interfaces (FMI)

• Model-based System Engineering
10s/20s

• Focus on Autonomous Modelling

• Free online modelling

• AI-based modelling

20s/30s
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