
Virtual Physics
Equation-Based Modeling

Dr. Dirk Zimmer

German Aerospace Center (DLR), Robotics and Mechatronics Centre

TUM, October 18, 2022

Equation-based modeling: first steps

equation

sx0 = cos(frame_a.phi)*sx_norm + …

sy0 = -sin(frame_a.phi)*sx_norm + …

vy = der(frame_a.y);

w_roll = der(flange_a.phi);

v_long = vx*sx0 + vy*sy0;

v_lat = -vx*sy0 + vy*sx0;

v_slip_lat = v_lat - 0;

v_slip_long = v_long - R*w_roll;

v_slip = sqrt(v_slip_long^2 + …

-f_long*R = flange_a.tau;

frame_a.t = 0;

f = N*. S_Func(vAdhesion,vSlide,…

f_long =f*v_slip_long/v_slip;

f_lat =f*v_slip_lat/v_slip;

f_long = frame_a.fx*sx0 + …

f_lat = -frame_a.fx*sy0 + …

© Dirk Zimmer, October 2022, Slide 2

Robotics and Mechatronics Centre

+

• Let us start with a simple modeling example:

Let us brew beer! (or ferment wine.. for the non-ba(rb/v)arians)

• In this example, we are going to model the fermentation of sugar into
alcohol and the corresponding growth and decay of yeast.

• In the process of fermentation each molecule of sugar is transformed
into two molecules of alcohol (plus 2 CO2)

C6H12O6 → 2 C2H5OH + 2 CO2

Modeling Example

© Dirk Zimmer, October 2022, Slide 3

Robotics and Mechatronics Centre

+

• These are our model variables:

• Population of yeast: p

• Birth-Rate: b

• Death-Rate: d

• Concentration of sugar: s

• Concentration of alcohol: a

• Consumption of sugar: f

• Current Temperature: T

Variables and Parameters

• These are our model parameters:

• Volume of vessel: V = 1

• Initial concentration of sugar:
s0 = 0.2

• Initial population of yeast:
p0 = 0.001

• Feeding-Rate Coefficient: Cf

• Reproductivity: R

• Sensitivity to poison: S

• Reference Temperature: Tref

© Dirk Zimmer, October 2022, Slide 4

Robotics and Mechatronics Centre

+

Let us start with the algebraic equations:

• The consumption of sugar (f) is proportional to concentration of sugar (s)
multiplied by the population of yeast (p). The proportionality is
determined by the feeding-rate (Cf) and the temperature (T)

f = s ∙ p ∙ Cf ∙ (T/Tref)

• Roughly half of the molecular mass of the sugar is transformed into
alcohol, but alcohol has a much lower density. Hence we make the
(incorrect) simplifying assumption:

a = s0 – s

with s0 being s at t=0

Algebraic Equations

© Dirk Zimmer, October 2022, Slide 5

Robotics and Mechatronics Centre

+

Let us continue with the algebraic equations:

• The Birth-Rate is proportional to concentration of sugar (s). The
proportionality is determined by the reproduction (R):

b = R ∙ s

• The Death-Rate is dependent on the level of poisonous alcohol (a) and
the sensitive (S) of the yeast.

d = S ∙ a

Algebraic Equations

© Dirk Zimmer, October 2022, Slide 6

Robotics and Mechatronics Centre

+

The algebraic equations are:

f = s ∙ p ∙ Cf ∙ (T/Tref)

a = s0 – s

b = R ∙ s

d = S ∙ a

T is determined from outside (input-variable)

Algebraic Equations

© Dirk Zimmer, October 2022, Slide 7

Robotics and Mechatronics Centre

+

The differential equations describe the change over time:

• The change in population (dp/dt) equals the birth-rate (b) minus the
death rate (d) and is proportional to the current population (p):

dp/dt = p ∙ (b-d)

• The change in concentration of sugar (ds/dt) multiplied by the Volume
(V) equals the negative consumption rate (f) of sugar :

V ∙ ds/dt = -f

or

ds/dt = -f/ V

Differential Equations

© Dirk Zimmer, October 2022, Slide 8

Robotics and Mechatronics Centre

+

The differential equations are:

dp/dt = p ∙ (b-d)

ds/dt = -f/V

Differential Equations

© Dirk Zimmer, October 2022, Slide 9

Robotics and Mechatronics Centre

+

Let us plug in the algebraic equations:

dp/dt = p ∙ (b-d)

ds/dt = -f/V

Differential Equations

© Dirk Zimmer, October 2022, Slide 10

Robotics and Mechatronics Centre

+

Let us plug in the algebraic equations:

dp/dt = p ∙ (b-d)

dp/dt = p ∙ (R∙s - S∙a)

ds/dt = -f/V

Differential Equations

© Dirk Zimmer, October 2022, Slide 11

Robotics and Mechatronics Centre

+

Let us plug in the algebraic equations:

dp/dt = p ∙ (b-d)

dp/dt = p ∙(R∙s - S∙a)

dp/dt = p ∙(R∙s - S∙(s0-s))

ds/dt = -f/V

Differential Equations

© Dirk Zimmer, October 2022, Slide 12

Robotics and Mechatronics Centre

+

Let us plug in the algebraic equations:

dp/dt = p ∙ (b-d)

dp/dt = p ∙(R∙s - S∙a)

dp/dt = p ∙(R ∙ s - S ∙(s0-s))

dp/dt = p ∙((R+S)∙s - S∙s0)

ds/dt = -f/V

Differential Equations

© Dirk Zimmer, October 2022, Slide 13

Robotics and Mechatronics Centre

+

Let us plug in the algebraic equations:

dp/dt = p ∙ (b-d)

dp/dt = p ∙ (R∙s - S∙a)

dp/dt = p ∙(R∙s - S∙(s0-s))

dp/dt = p ∙((R+S)∙s - S∙s0)

ds/dt = -f/V

ds/dt = -s ∙ p ∙ Cf ∙ (T/Tref) ∙ 1/V

Differential Equations

© Dirk Zimmer, October 2022, Slide 14

Robotics and Mechatronics Centre

+

Let us plug in the algebraic equations:

dp/dt = p ∙((R+S)∙s - S∙s0)

ds/dt = -s ∙ p ∙ Cf ∙ (T/Tref) ∙ 1/V

Differential Equations

© Dirk Zimmer, October 2022, Slide 15

Robotics and Mechatronics Centre

+

• Let us discretize the advance of time by the quantum h:

• Given xt , we can compute xt+h by using the Taylor-series expansion:

xt+h = xt + (dx/dt)t ∙ h + (dx /dt2)t ∙ (h
2/2) + (dx /dt3)t ∙ (h

3/6) + …

• Let us drop all higher derivatives. We get:

xt+h = xt + (dx/dt)t ∙ h

• This discretization scheme is called: Forward Euler

Time Discretization

© Dirk Zimmer, October 2022, Slide 16

Robotics and Mechatronics Centre

+

Let us apply Forward Euler to our differential equations:

pt+h = pt + (dp/dt)t ∙ h

with

(dp/dt)t = pt ∙((R+S)∙st - S∙s0)

st+h = st + (ds/dt)t ∙ h

with

(ds/dt)t= -st ∙ pt ∙ Cf ∙ (Tt/Tref) ∙ 1/V

Time Discretization

© Dirk Zimmer, October 2022, Slide 17

Robotics and Mechatronics Centre

+

• These four explicit equations are used to perform a simulation:

pt+h = pt + (dp/dt)t ∙ h with (dp/dt)t = pt ∙((R+S) ∙ st - S ∙ s0)

st+h = st + (ds/dt)t ∙ h with (ds/dt)t= -st ∙ pt ∙ Cf ∙ (Tt/Tref) ∙ 1/V

• We can simply punch them into a Phyton3 script:

• Here, there are computed within a loop. Each iteration represents one
time-step: an advance of h in time.

Simulation

while time < 10:

dp_dt = p*((R+S)*s - S*s0)

ds_dt = -s*p*C_f*(T/T_ref)*1/V

p += h*dp_dt

s += h*ds_dt

a = s0-s

time += h

print(time,"\t",p,"\t",s,"\t",a)

© Dirk Zimmer, October 2022, Slide 18

Robotics and Mechatronics Centre

+

This is the complete Phyton3-Script:

Simulation Code

#!/usr/bin/env python3

#Setting the parameters

V = 1 #volume of fermentation vessel

s0 = 0.2 #inital concentration of sugar

p0 = 1e-6 #initial population of yeast [m3]

C_f = 50 #feeding Coefficient [1/day]

R = 10 #reproductivity [1/day]

S = 15 #sensitivity w.r.t. alcohol [1/day]

T_ref = 300 #reference temperature [K]

h = 0.01 #time-step of forward Euler integration

#Setting the initial values

p = p0

s = s0

a = s0 - s;

time = 0

#Setting the input-value
T = 310

#perform time-integration
while time < 10:

dp_dt = p*((R+S)*s - S*s0)

ds_dt = -s*p*C_f*(T/T_ref)*1/V

p += h*dp_dt

s += h*ds_dt

a = s0-s

time += h

print(time,"\t",p,"\t",s,"\t",a)

© Dirk Zimmer, October 2022, Slide 19

Robotics and Mechatronics Centre

+

• And this is the result for the yeast population:

Simulation Results

0.0 2.5 5.0 7.5 10.0
-0.001

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.010
p

[day]

[m3]

© Dirk Zimmer, October 2022, Slide 20

Robotics and Mechatronics Centre

+

• Concentration of sugar and alcohol:

Simulation Results

0.0 2.5 5.0 7.5 10.0
-0.05

0.00

0.05

0.10

0.15

0.20

0.25
s a

[m3]

[day]

© Dirk Zimmer, October 2022, Slide 21

Robotics and Mechatronics Centre

+

Interpretation of the simulation results:

• The population of yeast first grows exponentially. There seems to be an
endless supply of sugar available.

• Then the population has reached a critical level and the concentration of
sugar and alcohol are rapidly changing.

• Then, there is a sudden die-off due to the combination of starvation and
self-poisoning.

Simulation Results

© Dirk Zimmer, October 2022, Slide 22

Robotics and Mechatronics Centre

+

Let us look at the computational structure of our model. We can classify our
variables into vectors of…

• Input Variables: u = (T)

• State Variables: x = (p, s)

• State Derivatives: dx/dt = (dp/dt, ds/dt)

• Output Variables: y = (a)

• The system was then transformed into two functions:

dx/dt = f(x,u,t)

y = g(x,u,t)

• This specific form is called: state-space form

State-Space Form

© Dirk Zimmer, October 2022, Slide 23

Robotics and Mechatronics Centre

+

• We form a row vector out of x,u, and t: (p,s,T,t)

• We form a column vector out of dx/dt and y: (dp/dx, ds/dx, a)

• Now we can represent the dependences of our computational structure
by a Boolean incidence matrix.

State-Space Form

p s T t

dp/dt X X

ds/dt X X X

a X

dp/dt = p∙ ((R+S) ∙s - S∙s0)

ds/dt = -s∙p∙Cf∙ (T/Tref) ∙ 1/V

a = s0 – s

dx/dt

y

f(…)

g(…)

x (u, t)

© Dirk Zimmer, October 2022, Slide 24

Robotics and Mechatronics Centre

+

• The incidence matrix can be decomposed into four blocks: A, B, C, D.

• If g(…) and f(…) represent linear functions (not the case here!), the
system can indeed be expressed by real-valued matrices:

dx/dt = Ax + B(u, t)

y = Cx + D(u, t)

State-Space Form

p s T t

dp/dt X X

ds/dt X X X

a X

A B

C D

© Dirk Zimmer, October 2022, Slide 25

Robotics and Mechatronics Centre

+

Let us summarize the development process of our simulation:

• First, we had to analyze our model and select the variables of
interest.

• Then, we formulated a set of differential-algebraic equations
(DAEs).

• Next, we had to transform this set of expressions into a
computable/solvable form (state-space form).

• Finally, a time-discretization scheme was applied and a
numerical integration could be performed (numerical ODE-
solver).

Summary

© Dirk Zimmer, October 2022, Slide 26

Robotics and Mechatronics Centre

+

Even for this small and rather trivial example, this development
process was rather laborious.

• Larger models cause much more work.

• Also there are more complicated models that are difficult to
transform into state-space form.

• If we change the model, the complete process has to be
redone.

• Programming a simulation manually turns out to be very
inconvenient and is also very error-prone.

• For these reasons, a number of computer languages have been
developed that aim to automate this process.

• Let us take a look back in history…

Deficiencies

© Dirk Zimmer, October 2022, Slide 27

Robotics and Mechatronics Centre

+

• The language MIMIC was
developed mainly for the
Control Data super-computers
in 1964.

• The listing presents the MIMIC
code for the simulation of a
swinging pendulum.

• Successors of these language
were CSMP and ACSL. They
prevailed up to the 80s.

MIMIC (History)

CON(G) Declaration of constants

PAR(1X0,X0) Declaration of parameters

DT 0.05 Definition of time step

1X INT(-G*Z,1X0) Integration

X INT(1X,X0)

Y 1.-COS(X) Equation for y position

Z SIN(X) Equation for z position

FIN(T,4.9) Command for integration

PLO(T,X,Y,Z) Commands for plotting

ZER(0.,-5,0.,-1)

SCA(5.,5.,2.,1.)

END End of program

© Dirk Zimmer, October 2022, Slide 28

Robotics and Mechatronics Centre

+

CDC 6600

• 40 MHz, roughly 1MFLOPS, 64K 60-bit words of memory

• Roughly 400´000 transistors, over 100 miles of wiring

• A predecessor of the RISC-Architecture. Developed by Seymour Cray

• Prize: 7 – 10 Million $ (and by that time, the dollar was worth something)

MIMIC

© Dirk Zimmer, October 2022, Slide 29

Robotics and Mechatronics Centre

+

• The model could be formulated
by assignments and integrators.

• These model “equations” could
be arbitrarily ordered.

• The appropriate order for the
state-space form is
automatically derived.

• The time-discretization is not
part of the model anymore.
Different numerical ODE-solvers
can be applied (better than FE)

MIMIC (Advantages)

CON(G) Declaration of constants

PAR(1X0,X0) Declaration of parameters

DT 0.05 Definition of time step

1X INT(-G*Z,1X0) Integration

X INT(1X,X0)

Y 1.-COS(X) Equation for y position

Z SIN(X) Equation for z position

FIN(T,4.9) Command for integration

PLO(T,X,Y,Z) Commands for plotting

ZER(0.,-5,0.,-1)

SCA(5.,5.,2.,1.)

END End of program

© Dirk Zimmer, October 2022, Slide 30

Robotics and Mechatronics Centre

+

• MIMIC could not handle real
equations, only causal
assignments.

• There were hardly any means
to structure the program. The
language was almost
completely flat and there is
only one global namespace.

MIMIC (Deficiencies)

CON(G) Declaration of constants

PAR(1X0,X0) Declaration of parameters

DT 0.05 Definition of time step

1X INT(-G*Z,1X0) Integration

X INT(1X,X0)

Y 1.-COS(X) Equation for y position

Z SIN(X) Equation for z position

FIN(T,4.9) Command for integration

PLO(T,X,Y,Z) Commands for plotting

ZER(0.,-5,0.,-1)

SCA(5.,5.,2.,1.)

END End of program

© Dirk Zimmer, October 2022, Slide 31

Robotics and Mechatronics Centre

+

• The Dynamic Modeling Language
was developed by Hilding Elmquist
in 1978.

• The listing on the left displays the
code of an assembled electric
circuit and of its capacitor
component.

Dymola

model type capacitor

cut A (Va / I) B (Vb / -I)

main cut C [A B]

main path P <A - B>

local V

parameter C

V = Va -Vb

C*der(V) = I

end

model Network

submodel (resistor) R1 R2

submodel (capacitor) C

submodel (current) F

submodel Common

input i

output y

connect Common to F to R1 to (C par R2)

to Common

E.I = i

y = R2.Va

end

© Dirk Zimmer, October 2022, Slide 32

Robotics and Mechatronics Centre

+

• Dymola is a declarative language.
It only contains code for the
model-equations. The simulation is
completely decoupled from the
model description.

• This language enabled the
formulation of hierarchic elements
such as sub-components.

• These components could be
automatically connected.

Dymola

model type capacitor

cut A (Va / I) B (Vb / -I)

main cut C [A B]

main path P <A - B>

local V

parameter C

V = Va -Vb

C*der(V) = I

end

model Network

submodel (resistor) R1 R2

submodel (capacitor) C

submodel (current) F

submodel Common

input i

output y

connect Common to F to R1 to (C par R2)

to Common

E.I = i

y = R2.Va

end

© Dirk Zimmer, October 2022, Slide 33

Robotics and Mechatronics Centre

+

• Dymola can handle non-causal
equations such as u = R*i

• In R1, the causality is: u := R*i

• In R2, the causality is: i := u/R

• In Dymola, one can use the same,
non-causal equations for both
resistor components.

Dymola

model type capacitor

cut A (Va / I) B (Vb / -I)

main cut C [A B]

main path P <A - B>

local V

parameter C

V = Va -Vb

C*der(V) = I

end

model Network

submodel (resistor) R1 R2

submodel (capacitor) C

submodel (current) F

submodel Common

input i

output y

connect Common to F to R1 to (C par R2)

to Common

E.I = i

y = R2.Va

end

© Dirk Zimmer, October 2022, Slide 34

Robotics and Mechatronics Centre

+

• Dymola never had any real impact in industry, it remained within
academia.

• There, its main ideas were preserved and extended by Omola.
This language enables a truly object-oriented modeling, featuring
inheritance, wrapping etc.

• Modeling in Omola was also performed graphically. Only the
fundamental equations are entered in textual form. All higher-
level model are assembled graphically.

• Also Omola remained within academia. Things started to change
as Modelica was born in 1997.

Omola

© Dirk Zimmer, October 2022, Slide 35

Robotics and Mechatronics Centre

+

Demonstration

Modelica

© Dirk Zimmer, October 2022, Slide 36

Robotics and Mechatronics Centre

+

• As you see: Dymola is still alive,
but not as modeling language
but as an M&S environment for
Modelica.

• In Modelica, we can directly
punch in our model equations.

• There is no need anymore to
derive the state-space form by
paper and pencil.

Modelica

model Yeast
parameter Real V = 1 "volume of fermentation vessel";
parameter Real s0 = 0.2 "initial concentration of sugar";
parameter Real p0 = 1e-6 "initial population of yeast";
parameter Real C_f = 50 "Feeding Coefficient [1/day]";
parameter Real R = 10 "Reproductivity [1/day]";
parameter Real S = 15 "Sensitivity w.r.t. alcohol [1/day]";
parameter Real T_ref = 300 "reference temperature";
Real p "population of yeast";
Real b "birth rate";
Real d "death rate";
Real s "concentration of sugar";
Real a "concentration of alcohol";
Real f "consumption of sugar (feeding)";
Real T "current temperature";

initial equation
p = p0;
s = s0;

equation
f = s * p * C_f * (T/T_ref);
a = s0 - s;
b = R * s;
d = S * a;
T = 310;
der(p) = p*(b-d);
V*der(s) = -f;

end Yeast;

© Dirk Zimmer, October 2022, Slide 37

Robotics and Mechatronics Centre

+Modeling and Simulation

State-Space Form

Numerical ODE-Solver

Causalized Equations

Non-causal DAEs

Hiearchical, Object-
Oriented Models

MIMIC

Dymola

Modelica

Manual
Implementation

Modeling

Simulation

• In the field of programming
languages, there are high-
level languages (Phyton, C++)
and low-level languages
(Assembler)

• The same is true for modeling
languages.

• The state-space form is a
common target of their
compilation scheme (the
Assembler language of a
modeler).

© Dirk Zimmer, October 2022, Slide 38

Robotics and Mechatronics Centre

+Modeling and Simulation

State-Space Form

Numerical ODE-Solver

Causalized Equations

Non-causal DAEs

Hiearchical, Object-
Oriented Models

MIMIC

Dymola

Modelica

Manual
Implementation

Modeling

Simulation

• The first (and larger) part of
the lecture concerns the
modeling side.

• You will learn to model in
Modelica using the software
Dymola.

© Dirk Zimmer, October 2022, Slide 39

Robotics and Mechatronics Centre

+Modeling and Simulation

State-Space Form

Numerical ODE-Solver

Causalized Equations

Non-causal DAEs

Hiearchical, Object-
Oriented Models

MIMIC

Dymola

Modelica

Manual
Implementation

Modeling

Simulation

The way up:

• To this end, we have to learn
how to formulate the laws of
physics in an object-oriented
way.

© Dirk Zimmer, October 2022, Slide 40

Robotics and Mechatronics Centre

+Modeling and Simulation

State-Space Form

Numerical ODE-Solver

Causalized Equations

Non-causal DAEs

Hiearchical, Object-
Oriented Models

MIMIC

Dymola

Modelica

Manual
Implementation

Modeling

Simulation

The way up:

• To this end, we have to learn
how to formulate the laws of
physics in an object-oriented
way.

• This is a sole matter of
physics. It has nothing to do
with computer science.

© Dirk Zimmer, October 2022, Slide 41

Robotics and Mechatronics Centre

+Modeling and Simulation

State-Space Form

Numerical ODE-Solver

Causalized Equations

Non-causal DAEs

Hiearchical, Object-
Oriented Models

MIMIC

Dymola

Modelica

Manual
Implementation

Modeling

Simulation

The way down:

• Then we have to learn how
the languages are compiled,
and how the state-space form
is automatically derived.

© Dirk Zimmer, October 2022, Slide 42

Robotics and Mechatronics Centre

+Modeling and Simulation

State-Space Form

Numerical ODE-Solver

Causalized Equations

Non-causal DAEs

Hiearchical, Object-
Oriented Models

MIMIC

Dymola

Modelica

Manual
Implementation

Modeling

Simulation

The way down:

• Then we have to learn how
the languages are compiled,
and how the state-space form
is automatically derived.

• This is a sole matter of
computer science. It has
nothing to do with physics.

© Dirk Zimmer, October 2022, Slide 43

Robotics and Mechatronics Centre

+Modeling and Simulation

State-Space Form

Numerical ODE-Solver

Causalized Equations

Non-causal DAEs

Hiearchical, Object-
Oriented Models

MIMIC

Dymola

Modelica

Manual
Implementation

Modeling

Simulation

The way down:

• Then we have to learn how
the languages are compiled,
and how the state-space form
is automatically derived.

• This is a sole matter of
computer science. It has
nothing to do with physics.

• (And by the way, we are going
to model a lot of cool
systems…)

© Dirk Zimmer, October 2022, Slide 44

Robotics and Mechatronics Centre

+Modeling and Simulation

State-Space Form

Numerical ODE-Solver

Causalized Equations

Non-causal DAEs

Hiearchical, Object-
Oriented Models

MIMIC

Dymola

Modelica

Manual
Implementation

Modeling

Simulation

• The second (and smaller) part
of this lecture series concerns
simulation.

• You will learn different
techniques how to implement
numerical ODE solvers, and
how they influence the
simulation result.

• In addition, the handling of
events will be discussed.

© Dirk Zimmer, October 2022, Slide 45

Robotics and Mechatronics Centre

+Modeling and Simulation

State-Space Form

Numerical ODE-Solver

Causalized Equations

Non-causal DAEs

Hiearchical, Object-
Oriented Models

MIMIC

Dymola

Modelica

Manual
Implementation

Modeling

Simulation

© Dirk Zimmer, October 2022, Slide 46

Robotics and Mechatronics Centre

+Model-based development

System Dynamics Model

Control Design

Early Design Optimization

Model-Based Algorithms: e.g. Health Monitoring

Embedded Models

Requirements Modeling

Certified, Distributed Model Code

Model-based Safety Analysis

Integration of Data and Tools

© Dirk Zimmer, October 2022, Slide 47

Robotics and Mechatronics Centre

+Future Trends

• Focus on Simulation

• ODE-based

• Numerical Solvers
70s/80s

• Focus on Modeling

• DAE-based

• Model Compiler Technology
90s/00s

• Focus on Tool-Integration

• Based on Interfaces (FMI)

• Model-based System Engineering
10s/20s

• Focus on Autonomous Modelling

• Free online modelling

• AI-based modelling

20s/30s

Questions?

	Lecture1b
	Virtual Physics�Equation-Based Modeling
	Modeling Example
	Variables and Parameters
	Algebraic Equations
	Algebraic Equations
	Algebraic Equations
	Differential Equations
	Differential Equations
	Differential Equations
	Differential Equations
	Differential Equations
	Differential Equations
	Differential Equations
	Differential Equations
	Time Discretization
	Time Discretization
	Simulation
	Simulation Code
	Simulation Results
	Simulation Results
	Simulation Results
	State-Space Form
	State-Space Form
	State-Space Form
	Summary
	Deficiencies
	MIMIC (History)
	MIMIC
	MIMIC (Advantages)
	MIMIC (Deficiencies)
	Dymola
	Dymola
	Dymola
	Omola
	Modelica
	Modelica
	Modeling and Simulation
	Modeling and Simulation
	Modeling and Simulation
	Modeling and Simulation
	Modeling and Simulation
	Modeling and Simulation
	Modeling and Simulation
	Modeling and Simulation
	Modeling and Simulation
	Model-based development
	Future Trends
	Questions?

