
Virtual Physics
Equation-Based Modeling

Dr. Dirk Zimmer

German Aerospace Center (DLR), Robotics and Mechatronics Centre

TUM, November 15, 2022

Compiling Modelica

(1)

 Parsing

(3)

 Instantiation

+ Flattening

(2)

Preprocessing

(4)

Causalization

(5)

Code

Generation

© Dirk Zimmer, November 2022, Slide 2

Robotics and Mechatronics Centre

+

• In this lecture, we are going to investigate the compilation process of a
Modelica model.

• The compilation can be roughly partitioned in 5 stages:

• Parsing

• Preprocessing

• Flattening

• Transformation into State-Space Form

• Code Generation

Compiling of Modelica

(1)

 Parsing

(3)

 Instantiation

+ Flattening

(2)

Preprocessing

(4)

Causalization

(5)

Code

Generation

© Dirk Zimmer, November 2022, Slide 3

Robotics and Mechatronics Centre

+

• The grammar of Modelica is specified as EBNF in the language definition.

• Modelica is not a LL(1)-language, so Parsing involves a few difficulties.

• Still, the language is rather easy to parse and no special means are
required.

Parsing

© Dirk Zimmer, November 2022, Slide 4

Robotics and Mechatronics Centre

+

• Preprocessing applies the means of type generation.

• Essentially, this concerns the extends clause and a few other language
means that we do not know yet.

• Implementing the extension is not trivial, since an extension of a
package may generate new type names. Hence the lookup of classes and
the extension may happen in several interleaved steps.

• Another difficulty is that the inherited elements also inherit the
namespace.

Preprocessing

© Dirk Zimmer, November 2022, Slide 5

Robotics and Mechatronics Centre

+

• Flattening means that the hierarchical model structure is destroyed and
that all parameters, variables and equations are collected in one global
set.

• Also the connections are transformed into equations.

• Function definitions are typically not flattened.

• The flattened model then represents a (potentially very large) systems of
DAEs.

Flattening

© Dirk Zimmer, November 2022, Slide 6

Robotics and Mechatronics Centre

+Flattening

model Circuit

parameter Real R1.R = 100;

parameter Real R2.R = 20;

…

Real R1.v; Real R1.i; Real R1.p.v;

Real R1.p.i; Real R1.n.v; Real R1.n.i;

Real R2.v; Real R2.i; …

…

…

equations

R1.v = R1.R*R1.i;

R1.v = R1.p.v - R1.n.v;

0 = R1.p.i + R1.n.i;

R1.i = R1.p.i;

R2.v = R2.R*R2.i;

…

…

G.p.v = S.n.v;

G.p.v = L.n.v;

G.p.v = R2.n;

G.p.i + S.n.i + L.n.i + R2.n.i + C.n.i

= 0;

…

…

end Pin;

model Circuit

Resistor R1(R=100);

Resistor R2(R=20);

Capacitor C(C=1e-6);

Inductor L(L=0.0015;

SineVSource S(Ampl=15, Freq=50);

Ground G;

equations

connect(G.p,S.n)

connect(G.p,L.n)

connect(G.p,R2.n)

connect(G.p,C.n)

connect(S.p,R1.p)

connect(S.p,L.p)

connect(R1.n,R2.p)

connect(R1.n,C.p)

end Pin;

→

© Dirk Zimmer, November 2022, Slide 7

Robotics and Mechatronics Centre

+

• A system of DAEs can typically be represented in the following implicit
form:

0 = F(dx/dt, x, u, t)

• The goal is, to transform this form into the explicit state-space form that
is suited for numerical ODE solvers.

dx/dt = f(x, u, t)

• This transformation is also called Index-Reduction.

• An efficient index-reduction is the heart of any Modelica Compiler and
its realization defines the remaining content of this lecture.

Into State-Space Form

© Dirk Zimmer, November 2022, Slide 8

Robotics and Mechatronics Centre

+

Let us review the simple electric circuit from lecture 2.

Example

R=150

R

G

vS1

vGiG

iR1

vS2

vR1 vR2

vC1

vC2

iR2
iC1

iC2iS1

iS2

© Dirk Zimmer, November 2022, Slide 9

Robotics and Mechatronics Centre

+

vS2 = vR1

iS2 + iR1 = 0

vR2 = vC1

iR2 + iC1 = 0

vC2 = vG

vS1 = vG

iC2 + iS1 + iG = 0

Node equations

Flat System of DAEs

vG = 0

iS1 + iS2 = 0
vS1 + 10V = vS2

uR = R ∙ iR1

IR1 + IR2 = 0
vR1 + uR = vR2

C ∙ duC/dt = iC1

IC1 + IC2 = 0
vC1 + uC = vC2

Component Equations

If we flatten this system, we know that 16 equations result:

© Dirk Zimmer, November 2022, Slide 10

Robotics and Mechatronics Centre

+

vS2 = vR1

iS2 + iR1 = 0

vR2 = vC1

iR2 + iC1 = 0

vC2 = vG

vS1 = vG

iC2 + iS1 + iG = 0

Node equations

Removing Alias Variables

vG = 0

iS1 + iS2 = 0
vS1 + 10V = vS2

uR = R ∙ iR1

IR1 + IR2 = 0
vR1 + uR = vR2

C ∙ duC/dt = iC1

IC1 + IC2 = 0
vC1 + uC = vC2

Component Equations

The first thing we can do, is to eliminate the trivial equations by removing
“alias” variables.

© Dirk Zimmer, November 2022, Slide 11

Robotics and Mechatronics Centre

+

vS2 = vR1

iS2 + iR1 = 0

vR2 = vC1

iR2 + iC1 = 0

vC2 = vG

vS1 = vG

iC2 + iS1 + iG = 0

Node equations

Removing Alias Variables

vG = 0

iS1 + iS2 = 0
vG + 10V = vR1

uR = R ∙ iR1

IR1 + IR2 = 0
vR1 + uR = vC1

C ∙ duC/dt = iC1

IC1 + IC2 = 0
vC1 + uC = vG

Component Equations

The first thing we can do, is to eliminate the trivial equations by removing
“alias” variables.

© Dirk Zimmer, November 2022, Slide 12

Robotics and Mechatronics Centre

+

vS2 = vR1

-iS1 + iR1 = 0

vR2 = vC1

-iR1 + iC1 = 0

vC2 = vG

vS1 = vG

-iC1 + iS1 + iG = 0

Node equations

Removing Alias Variables

vG = 0

iS1 + iS2 = 0
vG + 10V = vR1

uR = R ∙ iR1

IR1 + IR2 = 0
vR1 + uR = vC1

C ∙ duC/dt = iC1

IC1 + IC2 = 0
vC1 + uC = vG

Component Equations

The first thing we can do, is to eliminate the trivial equations by removing
“alias” variables.

© Dirk Zimmer, November 2022, Slide 13

Robotics and Mechatronics Centre

+

vG = 0

vG + 10V = vR1

uR = R ∙ iR1
vR1 + uR = vC1

C ∙ duC/dt = iC1
vC1 + uC = vG

-iS1 + iR1 = 0

-iR1 + iC1 = 0

-iC1 + iS1 + iG = 0

Removing Alias Variables

In total there remain 9 equations with 9 variables. (actually we could reduce even further…)

© Dirk Zimmer, November 2022, Slide 14

Robotics and Mechatronics Centre

+Into State Space Form

We now want to transform this set into a
computable state-space form.

• Input Variables: u = ()

• State Variables: x = (uC)

• State Derivatives: dx/dt = (duC/dt)

• Output Variables: y = ()

• Since u and y are empty, the system
only consists in the A-matrix.
(Remember the state-space form of lecture 1)

Non-causal set:

vG = 0

vG + 10V = vR1

uR = R ∙ iR1

vR1 + uR = vC1

C ∙ duC/dt = iC1

vC1 + uC = vG

-iS1 + iR1 = 0

-iR1 + iC1 = 0

-iC1 + iS1 + iG = 0

© Dirk Zimmer, November 2022, Slide 15

Robotics and Mechatronics Centre

+

Non-causal set:

vG = 0 

vG + 10V = vR1

uR = R ∙ iR1

vR1 + uR = vC1

C ∙ duC/dt = iC1

vC1 + uC = vG

-iS1 + iR1 = 0

-iR1 + iC1 = 0

-iC1 + iS1 + iG = 0

Forward Causalization

In order to generate computable code, we
must causalize the equations.

• Causalizing means that we determine
which unknown shall be determined by
which equation.

• We start with those equations that have
only one unknown.

• These can be causalized immediately

• The state (here: uC) is assumed to be
known.

© Dirk Zimmer, November 2022, Slide 16

Robotics and Mechatronics Centre

+

Non-causal Set:

vG + 10V = vR1

uR = R ∙ iR1

vR1 + uR = vC1

C ∙ duC/dt = iC1

vC1 + uC = vG

-iS1 + iR1 = 0

-iR1 + iC1 = 0

-iC1 + iS1 + iG = 0

Causal List:

vG := 0

Forward Causalization

In order to generate computable code, we
must causalize the equations.

• Causalizing means that we determine
which unknown shall be determined by
which equation.

• We start with those equations that have
only one unknown.

• These can be causalized immediately

• The state (here: uC) is assumed to be
known.

© Dirk Zimmer, November 2022, Slide 17

Robotics and Mechatronics Centre

+

Non-causal Set:

vG + 10V = vR1

uR = R ∙ iR1

vR1 + uR = vC1

C ∙ duC/dt = iC1

vC1 + uC = vG 

-iS1 + iR1 = 0

-iR1 + iC1 = 0

-iC1 + iS1 + iG = 0

Causal List:

vG := 0

Forward Causalization

• Having causalized an equation, more and
more variables become known.

• Hence we can continue with the
causalization procedure…

© Dirk Zimmer, November 2022, Slide 18

Robotics and Mechatronics Centre

+

Non-causal Set:

vG + 10V = vR1 

uR = R ∙ iR1

vR1 + uR = vC1

C ∙ duC/dt = iC1

-iS1 + iR1 = 0

-iR1 + iC1 = 0

-iC1 + iS1 + iG = 0

Causal List:

vG := 0

vC1 := - uC + vG

Forward Causalization

• Having causalized and equation, more and
more variables become known.

• Hence we can continue with the
causalization procedure…

© Dirk Zimmer, November 2022, Slide 19

Robotics and Mechatronics Centre

+

Non-causal Set:

uR = R ∙ iR1

vR1 + uR = vC1 

C ∙ duC/dt = iC1

-iS1 + iR1 = 0

-iR1 + iC1 = 0

-iC1 + iS1 + iG = 0

Causal List:

vG := 0

vC1 := - uC + vG

vR1 := vG + 10V

Forward Causalization

• Having causalized and equation, more and
more variables become known.

• Hence we can continue with the
causalization procedure…

© Dirk Zimmer, November 2022, Slide 20

Robotics and Mechatronics Centre

+

Non-causal Set:

uR = R ∙ iR1 

C ∙ duC/dt = iC1

-iS1 + iR1 = 0

-iR1 + iC1 = 0

-iC1 + iS1 + iG = 0

Causal List:

vG := 0

vC1 := - uC + vG

vR1 := vG + 10V

uR := vC1 - vR1

Forward Causalization

• Having causalized and equation, more and
more variables become known.

• Hence we can continue with the
causalization procedure…

© Dirk Zimmer, November 2022, Slide 21

Robotics and Mechatronics Centre

+

Non-causal Set:

C ∙ duC/dt = iC1

-iS1 + iR1 = 0 

-iR1 + iC1 = 0 

-iC1 + iS1 + iG = 0

Causal List:

vG := 0

vC1 := - uC + vG

vR1 := vG + 10V

uR := vC1 - vR1

iR1 := uR/R

Forward Causalization

• Having causalized and equation, more and
more variables become known.

• Hence we can continue with the
causalization procedure…

© Dirk Zimmer, November 2022, Slide 22

Robotics and Mechatronics Centre

+

Non-causal Set:

C ∙ duC/dt = iC1 

-iC1 + iS1 + iG = 0 

Causal List:

vG := 0

vC1 := - uC + vG

vR1 := vG + 10V

uR := vC1 - vR1

iR1 := uR/R

iS1 := iR1

iC1 := iR1

Forward Causalization

• Having causalized and equation, more and
more variables become known.

• Hence we can continue with the
causalization procedure…

© Dirk Zimmer, November 2022, Slide 23

Robotics and Mechatronics Centre

+

Causal List:

vG := 0

vC1 := - uC + vG

vR1 := vG + 10V

uR := vC1 - vR1

iR1 := uR/R

iS1 := iR1

iC1 := iR1

duC/dt := iC1/C

iG := iC1 - iS1

Causality Graph

• We can represent the causalized system by
means of an acyclic directed graph: The
causality graph.

• The vertices of the graph are the
equations or assignments

• The edges point out the computational
dependence.

• The causality graph gives rise to a partial
order of its vertices (equations)

© Dirk Zimmer, November 2022, Slide 24

Robotics and Mechatronics Centre

+

Causal List:

vG := 0

vC1 := - uC + vG

vR1 := vG + 10V

uR := vC1 - vR1

iR1 := uR/R

iS1 := iR1

iC1 := iR1

duC/dt := iC1/C

iG := iC1 - iS1

Causality Graph

• We can represent the causalized system by
means of an acyclic directed graph: The
causality graph.

vG := 0

vC1 := - uC + vG vR1 := vG + 10V

uR := vC1 - vR1

iR1 := uR/R

iS1 := iR1 iC1 := IR1

duC/dt := iC1/C iG := iC1 - iS1

© Dirk Zimmer, November 2022, Slide 25

Robotics and Mechatronics Centre

+

Non-causal set:

vG = 0

vG + 10V = vR1

uR = R ∙ iR1

vR1 + uR = vC1

C ∙ duC/dt = iC1

vC1 + uC = vG

-iS1 + iR1 = 0

-iR1 + iC1 = 0

-iC1 + iS1 + iG = 0

Structure Incidence Matrix

• The non-causal set of equations can be
represented by a structural incidence
matrix.

• The row vector corresponds to the set of
equations

• The column vector represents the set of
unknowns.

© Dirk Zimmer, November 2022, Slide 26

Robotics and Mechatronics Centre

+

Non-causal set:

1) vG = 0

2) vG + 10V = vR1

3) uR = R ∙ iR1

4) vR1 + uR = vC1

5) C ∙ duC/dt = iC1

6) vC1 + uC = vG

7) -iS1 + iR1 = 0

8) -iR1 + iC1 = 0

9) -iC1 + iS1 + iG = 0

Structure Incidence Matrix

iG iS1 iC1 iR1 vG vC1 vR1 uR duC

1) X

2) X X

3) X X

4) X X X

5) X X

6) X X

7) X X

8) X X

9) X X X

© Dirk Zimmer, November 2022, Slide 27

Robotics and Mechatronics Centre

+Structure Incidence Matrix

• If we permute the sets of equations and
variables given an order that is induced by
the causality graph…

• …the structural incidence matrix has a
lower triangular form with a full diagonal.

Causal List:

1) vG := 0

6) vC1 := - uC + vG

2) vR1 := vG + 10V

4) uR := vC1 - vR1

3) iR1 := uR/R

7) iS1 := iR1

8) iC1 := iR1

5) duC/dt := iC1/C

9) iG := iC1 - iS1

© Dirk Zimmer, November 2022, Slide 28

Robotics and Mechatronics Centre

+Structure Incidence Matrix

Causal List:

1) vG := 0

6) vC1 := - uC + vG

2) vR1 := vG + 10V

4) uR := vC1 - vR1

3) iR1 := uR/R

7) iS1 := iR1

8) iC1 := iR1

5) duC/dt := iC1/C

9) iG := iC1 - iS1

vG vC1 vR1 uR iR1 iS1 iC1 duC iG

1) X

6) X X

2) X X

4) X X X

3) X X

7) X X

8) X X

5) X X

9) X X X

© Dirk Zimmer, November 2022, Slide 29

Robotics and Mechatronics Centre

+Lower Triangular Form

• Hence the causalization of the equation system corresponds to a
permutation of the structure-incidence matrix into lower-triangular
form.

• A system in lower-triangular form can be solved by forward
substitution.

• This is equivalent to a sequence of explicit computations and thus
represents simple program code.

• Since the causality graph gives only rise to partial order, there might
be more than one valid permutation.

© Dirk Zimmer, November 2022, Slide 30

Robotics and Mechatronics Centre

+Block Lower Triangular Form

• Unfortunately, not all systems are permutable into lower-triangular
form. (For instance: if the structure-incidence matrix is full, any
permutation has no effect).

R=20

R1

R=40

R2

ground

© Dirk Zimmer, November 2022, Slide 31

Robotics and Mechatronics Centre

+Block Lower Triangular Form

• Unfortunately, not all systems are permutable into lower-triangular
form. (For instance: if the structure-incidence matrix is full, any
permutation has no effect).

R=20

R1

R=40

R2

ground

This voltage potential
cannot be explicitly determined,
just by causalizing individual equations

© Dirk Zimmer, November 2022, Slide 32

Robotics and Mechatronics Centre

+Block Lower Triangular Form

• Unfortunately, not all systems are permutable into lower-triangular
form. (For instance: if the structure-incidence matrix is full, any
permutation has no effect).

• So forward causalization is not a general procedure. It works only for
very simple systems.

• If we cannot attain a lower-triangular form, we aim to be as close as
possible to it. This is the block lower triangular (BLT) form.

• A matrix in BLT form is a matrix with blocks on the diagonal where
the blocks are as small as possible.

• The blocks of a BLT form can be uniquely determined by the
Dulmage-Mendelsohn Permutation.

© Dirk Zimmer, November 2022, Slide 33

Robotics and Mechatronics Centre

+Block Lower Triangular Form

X

X

X X

X X X

X X X

X X X X

X X X X

X X X X X

X X X

X X X

© Dirk Zimmer, November 2022, Slide 34

Robotics and Mechatronics Centre

+Dulmage-Mendelsohn Permutation

In order to compute the block lower triangular form, we apply the
Dulmage-Mendelsohn Permutation.

• This algorithm is combines a maximum matching on bipartite graphs
with Tarjan`s strong component analysis.

a b c d e f g h

E1 X X

E2 X X

E3 X X

E4 X X X X

E5 X X

E6 X

E7 X X X

E8 X X X

BLT?

© Dirk Zimmer, November 2022, Slide 35

Robotics and Mechatronics Centre

+Bipartite Graphs

First let us look at the equation system in form of a bipartite graph.

• The first set of vertices is represented by the equations (E1-E8).

• The second set of vertices is represented by the variables (a-h).

• The occurrence of a variable A in an equation B represents an edge in the
graph.

E1 E2 E3 E4 E5 E6 E7 E8

a b c d e f g h

© Dirk Zimmer, November 2022, Slide 36

Robotics and Mechatronics Centre

+Perfect Matching

In order to causalize the system, we need to assign an unknown to each
equation.

• Such an assignments equals a perfect matching.

• A structural regular system contains at least one perfect matching.

E1 E2 E3 E4 E5 E6 E7 E8

a b c d e f g h

© Dirk Zimmer, November 2022, Slide 37

Robotics and Mechatronics Centre

+Bipartite Graphs

Given the graph G(V,E): (V is the set of vertices, E is the set of Edges)

• A matching M in G consists in a set of edges (M  E) so that no vertex in
G is connected to two edges in M.

• A maximal matching is a matching M so that no edge in M\E can be
added.

• A maximum matching M is matching M so that there is no other
matching N for G with |N| > |M|

• A perfect matching is a matching with no unmatched vertex in G.

matching

© Dirk Zimmer, November 2022, Slide 38

Robotics and Mechatronics Centre

+Bipartite Graphs

Given the graph G(V,E):

• A matching M in G consists in a set of edges (M  E) so that no vertex in
G is connected to two edges in M.

• A maximal matching is a matching M so that no edge in M\E can be
added.

• A maximum matching M is matching M so that there is no other
matching N for G with |N| > |M|

• A perfect matching is a matching with no unmatched vertex in G.

maximal matching
(can be obtained by
a greedy algorithm)

© Dirk Zimmer, November 2022, Slide 39

Robotics and Mechatronics Centre

+Bipartite Graphs

Given the graph G(V,E):

• A matching M in G consists in a set of edges (M  E) so that no vertex in
G is connected to two edges in M.

• A maximal matching is a matching M so that no edge in M\E can be
added.

• A maximum matching M is matching M so that there is no other
matching N for G with |N| > |M|

• A perfect matching is a matching with no unmatched vertex in G.

maximum matching and
perfect matching

© Dirk Zimmer, November 2022, Slide 40

Robotics and Mechatronics Centre

+Perfect Matching

In order to causalize the system, we need to assign an unknown to each
equation.

• Such an assignments equals a perfect matching.

• A structural regular system contains at least one perfect matching.

E1 E2 E3 E4 E5 E6 E7 E8

a b c d e f g h

© Dirk Zimmer, November 2022, Slide 41

Robotics and Mechatronics Centre

+Maximum Matching

Any perfect matching represents a maximum matching.

• For structurally singular systems, the maximum matching reveals the
overconstrained equations and the undetermined variables.

Overconstrained Equation

Undetermined Variable

E1 E2 E3 E4 E5 E6 E7 E8

a b c d e f g h

E0

i

© Dirk Zimmer, November 2022, Slide 42

Robotics and Mechatronics Centre

+Augmenting Paths

Getting a maximal matching is easy but how can we obtain a maximum (and
hopefully perfect) matching?

• A path in G is called alternating path if its edges alternate between the
sets E\M and M (starting and ending arbitrarily).

• An augmenting path is an alternating path whose end-vertices are
unmatched.

• Finding an augmenting path naturally leads to a matching that is larger
by one: we can flip the matched edges with the unmatched edges.

© Dirk Zimmer, November 2022, Slide 43

Robotics and Mechatronics Centre

+Augmenting Paths

This observation leads to the Augmenting Path Algorithm:

1. Look for an augmenting path by a depth-first traversal of the edges.

2. Increase the matching by one.

3. Repeat until you cannot find any augmenting path anymore.

• Finding an augmenting path takes at maximum O(|E|) time.

• At maximum |V|/2 augmenting paths can be found.

• Hence the overall complexity is O(|V||E|)

© Dirk Zimmer, November 2022, Slide 44

Robotics and Mechatronics Centre

+Symmetric difference

It is evident that finding an augmenting path leads to a larger matching but
how can we be sure that finding none indicates a maximum matching?

• Let N be a maximum matching. Now let us look at the symmetric
difference D between M and N: D = (M  N) \ (M  N)

• D has a special structure. Each vertex in D can be at most connected to
two edges (one in M and one N). Hence each component C of D is either:

• an isolated vertex,

• a circle of even length, or

• an alternating path (cycle free).

• If |N| > |M| then at least one component C must have an uneven
number of edges. The only option is an augmenting path.

• We can make the stronger statement: For k = |N| - |M| the symmetric
difference D contains k disjoint augmenting paths.

© Dirk Zimmer, November 2022, Slide 45

Robotics and Mechatronics Centre

+Algorithm of Hopcroft and Karp

This statement suggest an improvement of the augmenting path algorithm.
Since the augmenting paths are disjoint, there cannot be many long
augmenting paths.

1. Perform a breath-first search on G to find the set of disjoint augmenting
paths of minimal length.

2. Increase the matching for each augmenting path found

3. Repeat until no augmenting path can be found.

• Each breadth-first search takes O(|E|) time.

• After r=sqrt(|V|) steps, the minimum length of an augmenting path is r.
There cannot be more than |V|/r = r augmenting paths left. Hence the
algorithm computes in O(r=sqrt(|V|) |E|)

• This variant is called Hopcroft’s Algorithm. (or Alg. of Hopcroft and Karp)

© Dirk Zimmer, November 2022, Slide 46

Robotics and Mechatronics Centre

+Construction a Digraph

• The perfect matching assigns an unknown to each equation.

• This can be interpreted as a preliminary causalization of the equations.

• Hence, we can construct a causality graph.

E1 E2 E3 E4 E5 E6 E7 E8

a b c d e f g h

© Dirk Zimmer, November 2022, Slide 47

Robotics and Mechatronics Centre

+Construction a Digraph

• The perfect matching assigns an unknown to each equation.

• This can be interpreted as a preliminary causalization of the equations.

• Hence, we can again construct a causality graph.

E1 E2 E3 E4 E5 E6 E7 E8

© Dirk Zimmer, November 2022, Slide 48

Robotics and Mechatronics Centre

+Construction a Digraph

• The perfect matching assigns an unknown to each equation.

• This can be interpreted as a preliminary causalization of the equations.

• Hence, we can again construct a causality graph.

E1

E2

E3

E4

E5

E6

E7 E8

© Dirk Zimmer, November 2022, Slide 49

Robotics and Mechatronics Centre

+Strong Components

• But, now the causality graph is not acyclic anymore.

• The graph contains strong components

A strong component H in a directed graph G
is a vertex-induced sub-graph of G

so that there is a path from each vertex
to any other vertex in H.

• The strong components in the digraph represent the blocks in the BLT-
form of the structure-incidence matrix.

© Dirk Zimmer, November 2022, Slide 50

Robotics and Mechatronics Centre

+Tarjan`s Algorithm

• Tarjan’s strong component analysis is a depth-first traversal of the di-
graph with marking and backtracking.

• Idea:

• We traverse all vertices in depth-first manner.

• Each vertex is marked by an index i that represents the traversal
number.

• A vertex that has been marked is not traversed again. So each vertex
is only traversed only once.

• While backtracking, each vertex is assigned j being the minimum
index i or j of its direct neighbors or i of itself. Direct neighbors are
only included in the set if they are still on the traversal stack or if
their index j is pointing to the traversal stack.

• Finally, each strong component has one root vertex where i=j.

• For those vertices where i≠j, j points (directly or indirectly) to the
root vertex of the strong component.

© Dirk Zimmer, November 2022, Slide 51

Robotics and Mechatronics Centre

+Tarjan`s Algorithm: Example

• Here, we enumerate one possible depth first traversal.

E1

E2

E3

E4

E5

E6

E7 E8

1

2

3

4

5

6

7

8

© Dirk Zimmer, November 2022, Slide 52

Robotics and Mechatronics Centre

+

• Here, we enumerate the depth first traversal.

• While Backtracking, we reassign the minimum traversal number by the
one of the vertex itself or its direct neighbors.

Tarjan`s Algorithm: Example

E1

E2

E3

E4

E5

E6

E7 E8

1/1

2/2

3/2

4/2

5/5

6/2

7/7

8/7

© Dirk Zimmer, November 2022, Slide 53

Robotics and Mechatronics Centre

+Tarjan`s Algorithm: Example

• Let’s do it step by step. Depth-First Traversal

E1

E2

E3

E4

E5

E6

E7 E8

1

2

3

4

© Dirk Zimmer, November 2022, Slide 54

Robotics and Mechatronics Centre

+Tarjan`s Algorithm: Example

• Let’s do it step by step: Back-Tracking

E1

E2

E3

E4

E5

E6

E7 E8

1

2

3

4/2

© Dirk Zimmer, November 2022, Slide 55

Robotics and Mechatronics Centre

+Tarjan`s Algorithm: Example

• Let’s do it step by step: Depth-First Traversal

E1

E2

E3

E4

E5

E6

E7 E8

1

2

3

4/2

5

© Dirk Zimmer, November 2022, Slide 56

Robotics and Mechatronics Centre

+Tarjan`s Algorithm: Example

• Let’s do it step by step: Back-Tracking

E1

E2

E3

E4

E5

E6

E7 E8

1

2

3

4/2

5/5

© Dirk Zimmer, November 2022, Slide 57

Robotics and Mechatronics Centre

+Tarjan`s Algorithm: Example

• Let’s do it step by step: Depth-First Traversal

E1

E2

E3

E4

E5

E6

E7 E8

1

2

3

4/2

5/5

6

7

8

© Dirk Zimmer, November 2022, Slide 58

Robotics and Mechatronics Centre

+Tarjan`s Algorithm: Example

• Let’s do it step by step: Back-Tracking

E1

E2

E3

E4

E5

E6

E7 E8

1

2

3

4/2

5/5

6

7/7

8/7

© Dirk Zimmer, November 2022, Slide 59

Robotics and Mechatronics Centre

+Tarjan`s Algorithm: Example

• Let’s do it step by step: Back-Tracking

E1

E2

E3

E4

E5

E6

E7 E8

1

2

3

4/2

5/5

6/2

7/7

8/7

© Dirk Zimmer, November 2022, Slide 60

Robotics and Mechatronics Centre

+Tarjan`s Algorithm: Example

• Let’s do it step by step: Back-Tracking

E1

E2

E3

E4

E5

E6

E7 E8

1

2

3/2

4/2

5/5

6/2

7/7

8/7

© Dirk Zimmer, November 2022, Slide 61

Robotics and Mechatronics Centre

+Tarjan`s Algorithm: Example

• Let’s do it step by step: Back-Tracking

E1

E2

E3

E4

E5

E6

E7 E8

1

2/2

3/2

4/2

5/5

6/2

7/7

8/7

© Dirk Zimmer, November 2022, Slide 62

Robotics and Mechatronics Centre

+Tarjan`s Algorithm: Example

• Let’s do it step by step: Back-Tracking

E1

E2

E3

E4

E5

E6

E7 E8

1/1

2/2

3/2

4/2

5/5

6/2

7/7

8/7

© Dirk Zimmer, November 2022, Slide 63

Robotics and Mechatronics Centre

+

• Here, we enumerate one possible depth first traversal.

• While backtracking, we reassign the minimum traversal number by the
one of the vertex itself or of those direct neighbors located on the
traversal path.

• We find four strong components (where two are real components)

Tarjan`s Algorithm: Example

E1

E2

E3

E4

E5

E6

E7 E8

1/1

2/2

3/2

4/2

5/5

6/2

7/7

8/7

© Dirk Zimmer, November 2022, Slide 64

Robotics and Mechatronics Centre

+

• Here, a slight extension to the graph:

• E2, E3, E4, E5, E9 and E10 belong to one strong component.

• However, E10 and E9 point only indirectly to the root. E6 serves as a
relay.

Tarjan`s Algorithm: Watch it! (1)

© Dirk Zimmer, November 2022, Slide 65

Robotics and Mechatronics Centre

+

• It is important that only neighbors on the traversal path are considered…

• …because otherwise the components would be merged if we choose a
different order of the depth-first traversal.

Tarjan`s Algorithm: Watch it! (2)

E1

E2

E3

E4

E5

E6

E7 E8

Not on traversal path!!!

1/1

4/4

5/4

6/4

7/7

8/4 and not 8/2!!!

3/2

2/2

© Dirk Zimmer, November 2022, Slide 66

Robotics and Mechatronics Centre

+

• For the traversal, we traverse each vertex and each edge exactly once.

• So the algorithmic complexity is O(V+E) or O(V2)

• The maximum memory overhead is in O(V)

Tarjan`s Algorithm: Complexity

E1

E2

E3

E4

E5

E6

E7 E8

1/1

2/2

3/2

4/2

5/5

6/2

7/7

8/7

© Dirk Zimmer, November 2022, Slide 67

Robotics and Mechatronics Centre

+

• If we represent the strong components as a single vertex…

• … the causality graph is again acyclic and gives rise to a partial order.

• (E6) -> (E4,E2,E3,E5) -> (E1) -> (E7,E8)

• This order can be used to create the BLT-form.

Tarjan`s Algorithm: Partial Order

E1

E2

E3

E4

E5

E6

E7 E8

1/1

2/2

3/2

4/2

5/5

6/2

7/7

8/7

© Dirk Zimmer, November 2022, Slide 68

Robotics and Mechatronics Centre

+

• If we represent the strong components as a single vertex…

• … the causality graph is again acyclic and gives rise to a partial order.

• (E6) -> (E4,E2,E3,E5) -> (E1) -> (E7,E8)

• This order can be used to create the BLT-form.

Determining the BLT-Form

e d b c f a g h

E6 X

E4 X X X X

E2 X X

E3 X X

E5 X X

E1 X X

E7 X X

E8 X X X

© Dirk Zimmer, November 2022, Slide 69

Robotics and Mechatronics Centre

+

• We have managed so far to isolate the blocks…

• …but we still do not know how to generate code for the blocks.

• Idea: For each block we assume a set of its variables to be known.
These are called tearing variables.

• Given this presumption, we can causalize all equations in the block.

• Some equations are overconstrained. These are turned into residual
equations.

• So we do not generate code for the direct solution, but for an iterative
numerical solver!

Tearing

© Dirk Zimmer, November 2022, Slide 70

Robotics and Mechatronics Centre

+

• Let us look at an example:

• E7: g+h = 1 (g,h are unknowns)

• E8: g*h = f (f is known)

• We assume g to be known. g is a tearing variable. Now, we can causalize:

• E7: h:= 1-g

• E8: residual := f - g*h

• For every value of g, we get a residual value in return. If g is the correct
solution the residual will be zero.

• The causalized block, now represents a function residual = f(g).
We can use this code in order to solve the system iteratively.

Tearing

© Dirk Zimmer, November 2022, Slide 71

Robotics and Mechatronics Centre

+

• In order to solve 0 = f(x), we can apply standard root-solving methods.

• The most prominent is Newton’s Method.

• Newton’s Method is an iterative algorithm and requires an initial guess
x := x0

Newton’s Method

do

y := f(x)

x_old := x;

x := x - y/(df(x)/dx);

while 2*|x_old – x| / (|x_old| + |x|) > tol

© Dirk Zimmer, November 2022, Slide 72

Robotics and Mechatronics Centre

+

• In order to solve 0 = f(x), we can apply standard root-solving methods.

• The most prominent is Newton´s Method:

Newton’s Method

1

2

3
4 5

© Dirk Zimmer, November 2022, Slide 73

Robotics and Mechatronics Centre

+

• Newton Converges with order 2.

• This means that within the convergence area, the number of correct
digits doubles per step.

• For linear systems of equations, Newton converges in a single step.

Newton’s Method: Convergence

© Dirk Zimmer, November 2022, Slide 74

Robotics and Mechatronics Centre

+

• Newton’s Method can be extended to the multi-dimensional case
r = f(x) where r and x are vectors of size n.

• To this end, we need to compute the Jacobian: J = Df(x)
Example for n = 3:

J =

• Iteration formula: xnew = x – Δx

• Increment: JΔx = f(x)

• In order to compute the increment, we need to solve a linear system of
equations. This is of effort O(n3)

Newton’s Method: MultiDim

∂f(x)1/∂x1 ∂f(x)1/∂x2 ∂f(x)1/∂x3

∂f(x)2/∂x1 ∂f(x)2/∂x2 ∂f(x)2/∂x3

∂f(x)3/∂x1 ∂f(x)3/∂x2 ∂f(x)3/∂x3

© Dirk Zimmer, November 2022, Slide 75

Robotics and Mechatronics Centre

+

• Newton requires the computation of the (partial) derivatives within the
Jacobian Matrix.

• When these derivatives cannot be computed, we can take use of
methods that approximate the derivates during the process of
convergence.

• One example is the Secant Method:

Secant Method

1

2

3

4 5 6

© Dirk Zimmer, November 2022, Slide 76

Robotics and Mechatronics Centre

+

• There is one open question: How do we select the tearing-variables?

• Let us look at an example:

• E2: e = c+d+f (e is known)
E3: b = d
E4: c = d
E5: b = f

• If we select c and b as tearing variables, we get two residuals:
E2: f := e-c-d
E3: d:= b
E4: residual1 := c-d
E5: residual2 := b-f

Selection of Tearing Variables

© Dirk Zimmer, November 2022, Slide 77

Robotics and Mechatronics Centre

+

• There is one open question: How do we select the tearing-variables?

• Let us look at an example:

• E2: e = c+d+f (e is known)
E3: b = d
E4: c = d
E5: b = f

• But selecting d as tearing variable, turns out to be sufficient:
E3: b := d
E4: c := d
E5: f := b
E2: residual := c+d+f-e

Selection of Tearing Variables

© Dirk Zimmer, November 2022, Slide 78

Robotics and Mechatronics Centre

+

• By choosing a good set of tearing variables, we try to minimize the
number of required tearing variables and residuals.

• This minimizes the effort of each Newton iteration and minimizes the
amount of code that needs to be generated.

• Technically, we want to minimize the number of rows in the BLT-form
that have non-zero entries above the diagonal.

• Unfortunately, this optimization problem is NP-hard.

• Hence, heuristics are applied. (For instance, choose the equation that has the

lowest number of unknowns. From this equation, pick the variable that occurs in most
other equations.)

Selection of Tearing Variables

© Dirk Zimmer, November 2022, Slide 79

Robotics and Mechatronics Centre

+

• Some remarks: Applying an iterative solver on tearing variables is just
one of many methods to solve a system of non-linear equations.

• For band-matrices, tearing might be very tempting, since only a very
small number of tearing variables is sufficient. But frequently, it is
numerically highly unstable.

• In addition to tearing, Dymola transforms small linear systems into
explicit form by symbolic manipulations.

Some Remarks on Tearing

© Dirk Zimmer, November 2022, Slide 80

Robotics and Mechatronics Centre

+

• So far, we looked at the BLT-Transformation from a purely structural
viewpoint, assuming an equation can be solved for all its variables.

• In reality this is too simple. Let us consider:

a = sin(φ)

• By all means, we want to avoid causalizing for phi:

φ = asin(a)

• Since this just picks one out of infinitely many solutions and might
introduce discontinuities, when φ crosses n∙π during simulation time.

Some Remarks on Blocks

© Dirk Zimmer, November 2022, Slide 81

Robotics and Mechatronics Centre

+

• Usually, one solves an equation only for those variables that are linear
extractable. This means that x is only part of linear terms.

• Hence in reality, there might be more blocks than necessary from a pure
structural viewpoint.

• One can also apply the tearing first and identify the blocks later.
However, also this procedure may introduce extra blocks.

• Blocks are not nested!

Some Remarks on Blocks

© Dirk Zimmer, November 2022, Slide 82

Robotics and Mechatronics Centre

+

• The goal is to bring the flat system of DAEs into a form suited for
numerical ODE solvers.

• To this end, the BLT-form is desired.

• The blocks can be identified using the Dulmage-Mendelsohn
Permutation

• Perfect Matching

• Tarjan’s Algorithm

• The individual Blocks are solved iteratively by using the tearing method.

Summary

Questions?

	Lecture4
	Virtual Physics�Equation-Based Modeling
	Compiling of Modelica
	Parsing
	Preprocessing
	Flattening
	Flattening
	Into State-Space Form
	Example
	Flat System of DAEs
	Removing Alias Variables
	Removing Alias Variables
	Removing Alias Variables
	Removing Alias Variables
	Into State Space Form
	Forward Causalization
	Forward Causalization
	Forward Causalization
	Forward Causalization
	Forward Causalization
	Forward Causalization
	Forward Causalization
	Forward Causalization
	Causality Graph
	Causality Graph
	Structure Incidence Matrix
	Structure Incidence Matrix
	Structure Incidence Matrix
	Structure Incidence Matrix
	Lower Triangular Form
	Block Lower Triangular Form
	Block Lower Triangular Form
	Block Lower Triangular Form
	Block Lower Triangular Form
	Dulmage-Mendelsohn Permutation
	Bipartite Graphs
	Perfect Matching
	Bipartite Graphs
	Bipartite Graphs
	Bipartite Graphs
	Perfect Matching
	Maximum Matching
	Augmenting Paths
	Augmenting Paths
	Symmetric difference
	Algorithm of Hopcroft and Karp
	Construction a Digraph
	Construction a Digraph
	Construction a Digraph
	Strong Components
	Tarjan`s Algorithm
	Tarjan`s Algorithm: Example
	Tarjan`s Algorithm: Example
	Tarjan`s Algorithm: Example
	Tarjan`s Algorithm: Example
	Tarjan`s Algorithm: Example
	Tarjan`s Algorithm: Example
	Tarjan`s Algorithm: Example
	Tarjan`s Algorithm: Example
	Tarjan`s Algorithm: Example
	Tarjan`s Algorithm: Example
	Tarjan`s Algorithm: Example
	Tarjan`s Algorithm: Example
	Tarjan`s Algorithm: Example
	Tarjan`s Algorithm: Watch it! (1)
	Tarjan`s Algorithm: Watch it! (2)
	Tarjan`s Algorithm: Complexity
	Tarjan`s Algorithm: Partial Order
	Determining the BLT-Form
	Tearing
	Tearing
	Newton’s Method
	Newton’s Method
	Newton’s Method: Convergence
	Newton’s Method: MultiDim
	Secant Method
	Selection of Tearing Variables
	Selection of Tearing Variables
	Selection of Tearing Variables
	Some Remarks on Tearing
	Some Remarks on Blocks
	Some Remarks on Blocks
	Summary
	Questions?

