
Virtual Physics
Equation-Based Modeling

Dr. Dirk Zimmer

German Aerospace Center (DLR), Robotics and Mechatronics Centre

TUM, November 22, 2022

1D-Mechanical Systems

inertia

J=0.01

idealRolling?
mass

m=0.1

dryFriction

© Dirk Zimmer, November 2022, Slide 2

Robotics and Mechatronics Centre

+

For each physical domain, there is a specific pair of effort / flow variables

Potential and Flow

Domain Potential Flow

Translational Mechanics Velocity: v [m/s] Force: f [N]

Rotational Mechanics Angular Velocity: ω [1/s] Torque: τ [Nm]

Electrics Voltage Potential v [V] Current i [A]

Magnetics Magnetomotive Force:
Θ [A]

Time-derivative of
Magnetic Flux: Φ [V]

Hydraulics Pressure p [Pa] Volume flow rate V [m3/s]

Thermal Temperature T[K] Entropy Flow Rate S [J/Ks]

Chemical Chemical Potential: μ
[J/mol]

Molar Flow Rate v [mol/s]

∙

∙

∙

© Dirk Zimmer, November 2022, Slide 3

Robotics and Mechatronics Centre

+

For the mechanical domain, the first two are relevant:

Potential and Flow

Domain Potential Flow

Translational Mechanics Velocity: v [m/s] Force: f [N]

Rotational Mechanics Angular Velocity: ω [1/s] Torque: τ [Nm]

Electrics Voltage Potential v [V] Current i [A]

Magnetics Magnetomotive Force:
Θ [A]

Time-derivative of
Magnetic Flux: Φ [V]

Hydraulics Pressure p [Pa] Volume flow rate V [m3/s]

Thermal Temperature T[K] Entropy Flow Rate S [J/Ks]

Chemical Chemical Potential: μ
[J/mol]

Molar Flow Rate v [mol/s]

∙

∙

∙

© Dirk Zimmer, November 2022, Slide 4

Robotics and Mechatronics Centre

+

• Each node was represented by a pair of variables

A potential variable

v (velocity for translational mechanics)

ω (angular velocity for rotational mechanics)

and a flow variable

f (force for translational mechanics)

τ (force for rotational mechanics)

Potential and Flow

© Dirk Zimmer, November 2022, Slide 5

Robotics and Mechatronics Centre

+

• For one connection between a set of n nodes, n equations have to be
generated.

• n-1 equalities

Translational: v1 = v2 = … = vn

Rotational: ω1 = ω2 = … = ωn

• 1 balance equation

Translational: f1 + f2 + … + fn = 0

Rotational: τ1 + τ2 + … + τn= 0

Potential and Flow

© Dirk Zimmer, November 2022, Slide 6

Robotics and Mechatronics Centre

+

But the Modelica Standard Library supports different potential variables.

• Not the velocity v but the position s

• Not the angular velocity ω but the angle φ

• Why is this? Is our table incorrect?

Holonomic Constraints

connector Flange_a

SI.Position s;

flow SI.Force f

end Flange_a;

connector Flange_a

SI.Angle phi;

flow SI.Torque tau;

end Flange_a;

© Dirk Zimmer, November 2022, Slide 7

Robotics and Mechatronics Centre

+

• No, the table is correct but the correct formulation of mechanical system
adds another requirement:

The formulation of holonomic constraints!

• Holonomic Constraints are algebraic constraints on the level of position.

• A rigid rod describes a given distance between two flanges. Here two
positions are bound with one constraint equation.

• In order, to formulate such equations correctly, the position needs to be
part of the connector.

Holonomic Constraints

© Dirk Zimmer, November 2022, Slide 8

Robotics and Mechatronics Centre

+

• Let us model a simple system:

• Two masses connected to
springs.

• The position s1 and s2 are
connected by the following
holonomic constraint:

s1 = |s2|*s2

• Such non-linear constraints are
rare in 1D systems but common
in multidimensional systems.

Holonomic Constraints: Example

constraint

f1

f2

© Dirk Zimmer, November 2022, Slide 9

Robotics and Mechatronics Centre

+

• The constraint on positional level:

s1 = |s2|∙s2

• implies for the velocity:

v1 = 2|s2|∙ v2

• Power conservation states

v1∙ f1 + v2∙ f2 = 0

• or

f1 ∙ 2|s2| + f2 = 0

thanks to Edo Drenth for the power analysis

Holonomic Constraints: Example

constraint

f1

f2

© Dirk Zimmer, November 2022, Slide 10

Robotics and Mechatronics Centre

+

• Here is a handwritten Modelica-
code for this example:

• The two variables s1_int and
s2_int are used to formulate
the constraints.

• On the next slide you see the
simulation result (the positions of
the two masses).

Holonomic Constraints: Example

model TwoSpringsWithConstraint

Real s1;

Real s2;

Real v1;

Real v2;

Real f;

parameter Real m1 = 10;

parameter Real m2 = 2;

Real s1_int;

Real s2_int;

equation

v1 = der(s1);

v2 = der(s2);

-1*s1 + f = m1*der(v1);

-20*(s2-5) - f*abs(s2_int)*2

= m2*der(v2);

s1 = s1_int;

s2 = s2_int;

s1_int = abs(s2_int)*s2_int;

end TwoSpringsWithConstraint;

© Dirk Zimmer, November 2022, Slide 11

Robotics and Mechatronics Centre

+Holonomic Constraints: Example

0 10 20 30 40 50 60 70 80 90 100

0

4

8

12

16

20

24

s1 s2

• With DASSL and a local error tolerance of 0.0001:

© Dirk Zimmer, November 2022, Slide 12

Robotics and Mechatronics Centre

+Holonomic Constraints: Example

• With DASSL and a local error tolerance of 0.01…

• … the conservation of energy is violated by numerical integration.

0 10 20 30 40 50 60 70 80 90 100
-10

-5

0

5

10

15

20

25

30

35

s1 s2

© Dirk Zimmer, November 2022, Slide 13

Robotics and Mechatronics Centre

+Holonomic Constraints: Example

• With DASSL and a local error tolerance of 0.01…

• However, the holonomic constraint does hold up.

0 10 20 30 40 50 60 70 80 90 100

-6

-4

-2

0

2

4

6

s1 s2

© Dirk Zimmer, November 2022, Slide 14

Robotics and Mechatronics Centre

+

• But couldn’t we formulate the
same system, using just the
velocities v1 and v2 instead of
the positions s1 and s2?

• We could formulate s1_int and
s2_int as integrals for v1 and v2.

• Here is why not:
(using DASSL with tolerance
0.01):

Holonomic Constraints: Example

model TwoSpringsWithConstraint

Real s1;

Real s2;

Real v1;

Real v2;

Real f;

parameter Real m1 = 10;

parameter Real m2 = 2;

Real s1_int;

Real s2_int;

equation

v1 = der(s1);

v2 = der(s2);

-1*s1 + f = m1*der(v1);

-20*(s2-5) - f*abs(s2_int)*2

= m2*der(v2);

v1 = der(s1_int);

v2 = der(s2_int);

s1_int = abs(s2_int)*s2_int;

end TwoSpringsWithConstraint;

© Dirk Zimmer, November 2022, Slide 15

Robotics and Mechatronics Centre

+Holonomic Constraints: Example

• With DASSL and a local error tolerance of 0.01…

• … the error has gotten worse and…

0 10 20 30 40 50 60 70 80 90 100
-10

-5

0

5

10

15

20

25

30

35

40

s1 s2

© Dirk Zimmer, November 2022, Slide 16

Robotics and Mechatronics Centre

+Holonomic Constraints: Example

• With DASSL and a local error tolerance of 0.01…

• …the holonomic constraint is lost.

• There is now a shift between the bodies.

0 10 20 30 40 50 60 70 80 90 100

-6

-4

-2

0

2

4

6

s1 s2

© Dirk Zimmer, November 2022, Slide 17

Robotics and Mechatronics Centre

+

• What has happened? Why does
the system behave differently?

• Since s1 and s1_int are not
algebraically coupled, they are
separately integrated.

• The same holds for s2 and s2_int.

• Hence, the holonomic constraints
becomes subject to an increasing
numerical integration error.

• This can drastically change the
systems behavior.

Holonomic Constraints: Example

model TwoSpringsWithConstraint

Real s1;

Real s2;

Real v1;

Real v2;

Real f;

parameter Real m1 = 10;

parameter Real m2 = 2;

Real s1_int;

Real s2_int;

equation

v1 = der(s1);

v2 = der(s2);

-1*s1 + f = m1*der(v1);

-20*(s2-5) - f*abs(s2_int)*2

= m2*der(v2);

v1 = der(s1_int);

v2 = der(s2_int);

s1_int = abs(s2_int)*s2_int;

end TwoSpringsWithConstraint;

© Dirk Zimmer, November 2022, Slide 18

Robotics and Mechatronics Centre

+

• What has happened? Why does
the system behave differently?

• Since s1 and s1_int are not
algebraically coupled, they are
separately integrated.

• The same holds for s2 and s2_int.

• Hence, the holonomic constraints
becomes subject to an increasing
numerical integration error.

• This can drastically change the
systems behavior.

• So… DON’T!

Holonomic Constraints: Example

model TwoSpringsWithConstraint

Real s1;

Real s2;

Real v1;

Real v2;

Real f;

parameter Real m1 = 10;

parameter Real m2 = 2;

Real s1_int;

Real s2_int;

equation

v1 = der(s1);

v2 = der(s2);

-1*s1 + f = m1*der(v1);

-20*(s2-5) - f*abs(s2_int)*2

= m2*der(v2);

v1 = der(s1_int);

v2 = der(s2_int);

s1_int = abs(s2_int)*s2_int;

end TwoSpringsWithConstraint;

© Dirk Zimmer, November 2022, Slide 19

Robotics and Mechatronics Centre

+

• For our mechanical components, this means that we have to use
positions as potential variables:

• Each node was represented by a pair of variables

A potential variable

s (position for translational mechanics)

φ (angle for rotational mechanics)

and a flow variable

f (force for translational mechanics)

τ (force for rotational mechanics)

Holonomic Constraints

© Dirk Zimmer, November 2022, Slide 20

Robotics and Mechatronics Centre

+

• We see that the new potential equations imply the old ones:

• n-1 equalities

Translational: s1 = s2 = … = sn implies v1 = v2 = … = vn

Rotational: φ1 = φ 2 = … = φ n implies ω1 = ω2 = … = ωn

• 1 balance equation

Translational: f1 + f2 + … + fn = 0

Rotational: τ1 + τ2 + … + τn= 0

The information about the energy flow is still contained in our connector
variables!

Potential and Flow

© Dirk Zimmer, November 2022, Slide 21

Robotics and Mechatronics Centre

+

Now we can model the components: The dampers

∆v ∙ D = f ∆ω ∙ D = τ

∆v = d(s2-s1)/dt ∆ω = d(φ2- φ1)/dt

f = f2 τ = τ 2

0 = f1+f2 0 = τ 1+ τ 2

Dampers

© Dirk Zimmer, November 2022, Slide 22

Robotics and Mechatronics Centre

+

Now we can model the components: The dampers

∆v ∙ D = f ∆ω ∙ D = τ

∆v = d(s2-s1)/dt ∆ω = der(φ2- φ1) /dt

f = f2 τ = τ 2

0 = f1+f2 0 = τ 1+ τ 2

Dampers

This is totally fine

The derivatives are computed
symbolically not numerically

© Dirk Zimmer, November 2022, Slide 23

Robotics and Mechatronics Centre

+

The springs: Since the new formulation is based on the positions, the model
does not own a derivative anymore.

∆s ∙ C = f ∆φ ∙ C = τ

∆s = (s2-s1) - s0 ∆φ = (φ 2- φ1) - φ0

f = f2 τ = τ 2

0 = f1+f2 0 = τ 1+ τ 2

Springs

© Dirk Zimmer, November 2022, Slide 24

Robotics and Mechatronics Centre

+

Whereas the spring components have lost their integrator, the mass and
inertia have gained one:

f = M ∙ dv/dt τ = I ∙ dω/dt

v = ds1/dt ω = dφ 1/dt

s2 = s1 φ2= φ1

f = f1+f2 τ = τ1+ τ2

Mass and Inertia

© Dirk Zimmer, November 2022, Slide 25

Robotics and Mechatronics Centre

+

The transformer is represented by a gearbox. Its equation has hardly
changed.

φ2 = Ratio ∙ φ1

τ1 = Ratio ∙ τ2

Transformers

© Dirk Zimmer, November 2022, Slide 26

Robotics and Mechatronics Centre

+

An ideal rolling wheel represents a transformation between translational
and rotational movement.

Ideal rolling means that the velocity of the virtual contact point is zero. The
virtual contact point is located on the wheel.

Radius ∙ φ= s

τ = Radius ∙ f

Transformers

© Dirk Zimmer, November 2022, Slide 27

Robotics and Mechatronics Centre

+

• Finally, let us model a simple mechanical system.

• A ball is placed on a table and propelled forwards with reverse spin.
Eventually the spin will decelerate the ball and force him to roll
backwards.

• Here is a first model of such a system.

Ball with counter spin

inertia

J=0.01

idealRolling?
mass

m=0.1

damper

© Dirk Zimmer, November 2022, Slide 28

Robotics and Mechatronics Centre

+Ball with counter spin

0 1 2 3 4 5
-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

Dymola student version, see www.Dymola.com

mass.s

© Dirk Zimmer, November 2022, Slide 29

Robotics and Mechatronics Centre

+

• The damper generates a friction force that is proportional to the
difference in velocity.

• The damper is not a good friction model. It is too “smooth”.

• Instead we want to use a dry friction model instead.

Dry Friction

f

∆v

© Dirk Zimmer, November 2022, Slide 30

Robotics and Mechatronics Centre

+

• The characteristic curve for dry friction is a multi-valued function and
hence very tricky.

• The adhesive friction (“stiction”) is stronger than dry friction while
sliding. The friction force always counteracts the movement.

• Hence, the curve contains discontinuities and represents infinite
stiffness.

• The curve can also not be properly described by a mathematical
function.

Dry Friction

f

∆v

© Dirk Zimmer, November 2022, Slide 31

Robotics and Mechatronics Centre

+

• Hence, the dry friction model of Modelica is pretty complicated and
contains many language elements we do not know yet.

• Since we cannot cope with these discontinuities yet, we try to avoid
them.

• We do so be regularizing the characteristic curve.

Dry Friction

f

∆v

© Dirk Zimmer, November 2022, Slide 32

Robotics and Mechatronics Centre

+

• To this end, we “stretch” the curve and transform it into a piecewise
linear function.

• The cost of this approach is: loss of precision and/or artificial stiffness.

Dry Friction: Regularization

f

∆v

© Dirk Zimmer, November 2022, Slide 33

Robotics and Mechatronics Centre

+

• Instead of generating a piecewise linear function, we can also compose
the function using three S-functions and two constant functions.

• The result is a nicely differentiable function.

Dry Friction: Regularization

© Dirk Zimmer, November 2022, Slide 34

Robotics and Mechatronics Centre

+

• Instead of generating a piecewise linear function, we can also compose
the function using three S-functions.

• The result is a nicely differentiable function.

Dry Friction: Regularization

© Dirk Zimmer, November 2022, Slide 35

Robotics and Mechatronics Centre

+

• For the S-Function, we use a
polynomial:

y = -x3/2 + 3x/2

Dry Friction: S-Function

0.0 0.4 0.8

-1

0

1

Dymola student version, see www.Dymola.com

y

function S_Func

input Real x;

output Real y;

algorithm

if x > 1 then

y := 1;

elseif x < -1 then

y := -1;

else

y := -0.5*x^3 + 1.5*x;

end if;

end S_Func;

© Dirk Zimmer, November 2022, Slide 36

Robotics and Mechatronics Centre

+

• For the S-Function, we use a
polynomial:

y = -x3/2 + 3x/2

• Then, we provide inputs in order
to scale the function to fit an
arbitrary rectangle

(x_min, y_min, x_max, y_max)

• The annotation tells Dymola that
the function is differentiable
once. So they are no
discontinuities.

• This is important for the ODE-
solver.

Dry Friction: S-Function

function S_Func "Models an S-Function“

input Real x_min;

input Real x_max;

input Real y_min;

input Real y_max;

input Real x;

output Real y;

protected

Real x2;

algorithm

x2 := x - x_max/2 - x_min/2;

x2 := x2*2/(x_max-x_min);

if x2 > 1 then

y := 1;

elseif x2 < -1 then

y := -1;

else

y := -0.5*x2^3 + 1.5*x2;

end if;

y := y*(y_max-y_min)/2;

y := y + y_max/2 + y_min/2;

annotation(smoothOrder=1);

end S_Func;

© Dirk Zimmer, November 2022, Slide 37

Robotics and Mechatronics Centre

+

• We may use the S-Function in
order to compose the point-
symmetric Triple S-Function:

Dry Friction: Triple S-Function

function TripleS_Func

input Real x_max;

input Real x_sat;

input Real y_max;

input Real y_sat;

input Real x;

output Real y;

algorithm

if x > x_max then

y := S_Func(x_max,x_sat,

y_max,y_sat,x);

elseif x < -x_max then

y := S_Func(-x_max,-x_sat,

-y_max,-y_sat,x);

else

y := S_Func(-x_max,x_max,-

y_max,y_max,x);

end if;

annotation(smoothOrder=1);

end TripleS_Func;

x_satx_max

y_max

y_sat

© Dirk Zimmer, November 2022, Slide 38

Robotics and Mechatronics Centre

+

• Now we can model our own dry
friction component:

Dry Friction Model

model DryFriction

extends Modelica.Mechanics.

Translational.Interfaces.

PartialCompliantWithRelativeStates;

import SI = Modelica.SIunits;

parameter SI.Force N

"normal force";

parameter SI.Velocity vAdhesion

"adhesion velocity";

parameter SI.Velocity vSlide

"sliding velocity";

parameter Real mu_A

"friction coefficient at adhesion";

parameter Real mu_S

"friction coefficient at sliding";

equation

f = N*TripleS_Func(vAdhesion,vSlide,

mu_A,mu_S,v_rel);

end DryFriction;

© Dirk Zimmer, November 2022, Slide 39

Robotics and Mechatronics Centre

+

• Here is the application of our dry-friction component.

Counter spin and dry friction

inertia

J=0.01

idealRolling?
mass

m=0.1

dryFriction

© Dirk Zimmer, November 2022, Slide 40

Robotics and Mechatronics Centre

+Counter spin and dry friction

0 1 2 3 4 5
-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Dymola student version, see www.Dymola.com

mass.s

© Dirk Zimmer, November 2022, Slide 41

Robotics and Mechatronics Centre

+

• Rotational and translational mechanics can be treated the same way.

• The proper formulation of mechanical systems requires the formulation
of holonomic constraints.

• In order to enable this, positions and not velocities form the potential
connector variables.

• Consequently, the derivatives are redistributed within the components.

• We learnt about dry friction and regularization.

Summary

Questions ?

	Lecture5a
	Virtual Physics�Equation-Based Modeling
	Potential and Flow
	Potential and Flow
	Potential and Flow
	Potential and Flow
	Holonomic Constraints
	Holonomic Constraints
	Holonomic Constraints: Example
	Holonomic Constraints: Example
	Holonomic Constraints: Example
	Holonomic Constraints: Example
	Holonomic Constraints: Example
	Holonomic Constraints: Example
	Holonomic Constraints: Example
	Holonomic Constraints: Example
	Holonomic Constraints: Example
	Holonomic Constraints: Example
	Holonomic Constraints: Example
	Holonomic Constraints
	Potential and Flow
	Dampers
	Dampers
	Springs
	Mass and Inertia
	Transformers
	Transformers
	Ball with counter spin
	Ball with counter spin
	Dry Friction
	Dry Friction
	Dry Friction
	Dry Friction: Regularization
	Dry Friction: Regularization
	Dry Friction: Regularization
	Dry Friction: S-Function
	Dry Friction: S-Function
	Dry Friction: Triple S-Function
	Dry Friction Model
	Counter spin and dry friction
	Counter spin and dry friction
	Summary
	Questions ?

