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For each physical domain, there is a specific pair of effort / flow variables

Potential and Flow

Domain Potential Flow

Translational Mechanics Velocity: v [m/s] Force: f [N]

Rotational Mechanics Angular Velocity: ω [1/s] Torque: τ [Nm]

Electrics Voltage Potential v [V] Current i [A]

Magnetics Magnetomotive Force:
Θ [A]

Time-derivative of  
Magnetic Flux: Φ [V]

Hydraulics Pressure p [Pa] Volume flow rate V [m3/s]

Thermal Temperature T[K] Entropy Flow Rate S [J/Ks]

Chemical Chemical Potential: μ
[J/mol]

Molar Flow Rate v [mol/s]

∙

∙

∙
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For the mechanical domain, the first two are relevant:

Potential and Flow

Domain Potential Flow

Translational Mechanics Velocity: v [m/s] Force: f [N]

Rotational Mechanics Angular Velocity: ω [1/s] Torque: τ [Nm]

Electrics Voltage Potential v [V] Current i [A]

Magnetics Magnetomotive Force:
Θ [A]

Time-derivative of  
Magnetic Flux: Φ [V]

Hydraulics Pressure p [Pa] Volume flow rate V [m3/s]

Thermal Temperature T[K] Entropy Flow Rate S [J/Ks]

Chemical Chemical Potential: μ
[J/mol]

Molar Flow Rate v [mol/s]

∙

∙

∙
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• Each node was represented by a pair of variables

A potential variable

v (velocity for translational mechanics)

ω (angular velocity for rotational mechanics)

and a flow variable 

f (force for translational mechanics)

τ (force for rotational mechanics)

Potential and Flow
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• For one connection between a set of n nodes, n equations have to be 
generated.

• n-1 equalities

Translational: v1 = v2 = … = vn

Rotational: ω1 = ω2 = … = ωn

• 1 balance equation

Translational: f1 + f2 + … + fn = 0

Rotational: τ1 + τ2 + … + τn= 0 

Potential and Flow
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But the Modelica Standard Library supports different potential variables.

• Not the velocity v but the position s

• Not the angular velocity ω but the angle φ

• Why is this? Is our table incorrect? 

Holonomic Constraints

connector Flange_a

SI.Position s;

flow SI.Force f

end Flange_a;

connector Flange_a

SI.Angle phi;

flow SI.Torque tau;

end Flange_a;



© Dirk Zimmer, November 2022, Slide 7

Robotics and Mechatronics Centre

+

• No, the table is correct but the correct formulation of mechanical system 
adds another requirement: 

The formulation of holonomic constraints!

• Holonomic Constraints are algebraic constraints on the level of position.

• A rigid rod describes a given distance between two flanges. Here two 
positions are bound with one constraint equation.

• In order, to formulate such equations correctly, the position needs to be 
part of the connector.

Holonomic Constraints
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• Let us model a simple system:

• Two masses connected to 
springs.

• The position s1 and s2 are 
connected by the following 
holonomic constraint:

s1 = |s2|*s2

• Such non-linear constraints are 
rare in 1D systems but common 
in multidimensional systems.

Holonomic Constraints: Example

constraint

f1

f2
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• The constraint on positional level:

s1 = |s2|∙s2

• implies for the velocity:

v1 = 2|s2|∙ v2

• Power conservation states

v1∙ f1 +  v2∙ f2 = 0

• or

f1 ∙ 2|s2| + f2 = 0

thanks to Edo Drenth for the power analysis

Holonomic Constraints: Example

constraint

f1

f2



© Dirk Zimmer, November 2022, Slide 10

Robotics and Mechatronics Centre

+

• Here is a handwritten Modelica-
code for this example:

• The two variables s1_int and 
s2_int are used to formulate 
the constraints.

• On the next slide you see the 
simulation result (the positions of 
the two masses).

Holonomic Constraints: Example

model TwoSpringsWithConstraint

Real s1;

Real s2;

Real v1;

Real v2;

Real f;

parameter Real m1 = 10;

parameter Real m2 = 2;

Real s1_int;

Real s2_int;

equation 

v1 = der(s1);

v2 = der(s2);

-1*s1 + f =  m1*der(v1);

-20*(s2-5) - f*abs(s2_int)*2

= m2*der(v2);

s1 = s1_int;

s2 = s2_int;

s1_int = abs(s2_int)*s2_int;

end TwoSpringsWithConstraint;
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• With DASSL and a local error tolerance of 0.0001:
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• With DASSL and a local error tolerance of 0.01…

• … the conservation of energy is violated by numerical integration.
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• With DASSL and a local error tolerance of 0.01…

• However, the holonomic constraint does hold up.
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• But couldn’t we formulate the 
same system, using just the 
velocities v1 and v2 instead of 
the positions s1 and s2?

• We could formulate s1_int and 
s2_int as integrals for v1 and v2.

• Here is why not:
(using DASSL with tolerance 
0.01):

Holonomic Constraints: Example

model TwoSpringsWithConstraint

Real s1;

Real s2;

Real v1;

Real v2;

Real f;

parameter Real m1 = 10;

parameter Real m2 = 2;

Real s1_int;

Real s2_int;

equation 

v1 = der(s1);

v2 = der(s2);

-1*s1 + f =  m1*der(v1);

-20*(s2-5) - f*abs(s2_int)*2

= m2*der(v2);

v1 = der(s1_int);

v2 = der(s2_int);

s1_int = abs(s2_int)*s2_int;

end TwoSpringsWithConstraint;
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• With DASSL and a local error tolerance of 0.01…

• … the error has gotten worse and…
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• With DASSL and a local error tolerance of 0.01…

• …the holonomic constraint is lost. 

• There is now a shift between the bodies.
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• What has happened? Why does 
the system behave differently?

• Since s1 and s1_int are not 
algebraically coupled, they are 
separately integrated.

• The same holds for s2 and s2_int.

• Hence, the holonomic constraints 
becomes subject to an increasing 
numerical integration error.

• This can drastically change the 
systems behavior.

Holonomic Constraints: Example

model TwoSpringsWithConstraint

Real s1;

Real s2;

Real v1;

Real v2;

Real f;

parameter Real m1 = 10;

parameter Real m2 = 2;

Real s1_int;

Real s2_int;

equation 

v1 = der(s1);

v2 = der(s2);

-1*s1 + f =  m1*der(v1);

-20*(s2-5) - f*abs(s2_int)*2

= m2*der(v2);

v1 = der(s1_int);

v2 = der(s2_int);

s1_int = abs(s2_int)*s2_int;

end TwoSpringsWithConstraint;
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• What has happened? Why does 
the system behave differently?

• Since s1 and s1_int are not 
algebraically coupled, they are 
separately integrated.

• The same holds for s2 and s2_int.

• Hence, the holonomic constraints 
becomes subject to an increasing 
numerical integration error.

• This can drastically change the 
systems behavior.

• So… DON’T!

Holonomic Constraints: Example

model TwoSpringsWithConstraint

Real s1;

Real s2;

Real v1;

Real v2;

Real f;

parameter Real m1 = 10;

parameter Real m2 = 2;

Real s1_int;

Real s2_int;

equation 

v1 = der(s1);

v2 = der(s2);

-1*s1 + f =  m1*der(v1);

-20*(s2-5) - f*abs(s2_int)*2

= m2*der(v2);

v1 = der(s1_int);

v2 = der(s2_int);

s1_int = abs(s2_int)*s2_int;

end TwoSpringsWithConstraint;
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• For our mechanical components, this means that we have to use 
positions as potential variables:

• Each node was represented by a pair of variables

A potential variable

s (position for translational mechanics)

φ (angle for rotational mechanics)

and a flow variable 

f (force for translational mechanics)

τ (force for rotational mechanics)

Holonomic Constraints
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• We see that the new potential equations imply the old ones:

• n-1 equalities

Translational: s1 = s2 = … = sn  implies v1 = v2 = … = vn

Rotational: φ1 = φ 2 = … = φ n implies ω1 = ω2 = … = ωn

• 1 balance equation

Translational: f1 + f2 + … + fn = 0

Rotational: τ1 + τ2 + … + τn= 0 

The information about the energy flow is still contained in our connector 
variables!

Potential and Flow
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Now we can model the components: The dampers

∆v ∙ D = f ∆ω ∙ D = τ

∆v = d(s2-s1)/dt ∆ω = d(φ2- φ1)/dt

f = f2 τ = τ 2

0 = f1+f2 0 = τ 1+ τ 2

Dampers
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Now we can model the components: The dampers

∆v ∙ D = f ∆ω ∙ D = τ

∆v = d(s2-s1)/dt ∆ω = der(φ2- φ1) /dt

f = f2 τ = τ 2

0 = f1+f2 0 = τ 1+ τ 2

Dampers

This is totally fine

The derivatives are computed 
symbolically not numerically
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The springs: Since the new formulation is based on the positions, the model 
does not own a derivative anymore.

∆s ∙ C = f ∆φ ∙ C = τ

∆s = (s2-s1) - s0 ∆φ = (φ 2- φ1) - φ0

f = f2 τ = τ 2

0 = f1+f2 0 = τ 1+ τ 2

Springs
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Whereas the spring components have lost their integrator, the mass and 
inertia have gained one:

f  = M ∙ dv/dt τ = I ∙ dω/dt

v = ds1/dt ω = dφ 1/dt

s2 = s1 φ2= φ1

f = f1+f2 τ = τ1+ τ2

Mass and Inertia
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The transformer is represented by a gearbox. Its equation has hardly 
changed.

φ2 = Ratio ∙ φ1

τ1 = Ratio ∙ τ2

Transformers
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An ideal rolling wheel represents a transformation between translational 
and rotational movement.

Ideal rolling means that the velocity of the virtual contact point is zero. The 
virtual contact point is located on the wheel.

Radius ∙ φ= s 

τ = Radius ∙ f

Transformers
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• Finally, let us model a simple mechanical system.

• A ball is placed on a table and propelled forwards with reverse spin. 
Eventually the spin will decelerate the ball and force him to roll 
backwards.

• Here is a first model of such a system.

Ball with counter spin

inertia

J=0.01

idealRolling?
mass

m=0.1

damper
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+Ball with counter spin
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Dymola student version, see www.Dymola.com
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• The damper generates a friction force that is proportional to the 
difference in velocity.

• The damper is not a good friction model. It is too “smooth”.

• Instead we want to use a dry friction model instead.

Dry Friction

f

∆v
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• The characteristic curve for dry friction is a multi-valued function and 
hence very tricky.

• The adhesive friction (“stiction”) is stronger than dry friction while 
sliding. The friction force always counteracts the movement.

• Hence, the curve contains discontinuities and represents infinite 
stiffness.

• The curve can also not be properly described by a mathematical 
function.

Dry Friction

f

∆v



© Dirk Zimmer, November 2022, Slide 31

Robotics and Mechatronics Centre

+

• Hence, the dry friction model of Modelica is pretty complicated and 
contains many language elements we do not know yet.

• Since we cannot cope with these discontinuities yet, we try to avoid 
them.

• We do so be regularizing the characteristic curve.

Dry Friction

f

∆v
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• To this end, we “stretch” the curve and transform it into a piecewise 
linear function.

• The cost of this approach is: loss of precision and/or artificial stiffness.

Dry Friction: Regularization

f

∆v
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• Instead of generating a piecewise linear function, we can also compose 
the function using three S-functions and two constant functions.

• The result is a nicely differentiable function.

Dry Friction: Regularization
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• Instead of generating a piecewise linear function, we can also compose 
the function using three S-functions.

• The result is a nicely differentiable function.

Dry Friction: Regularization
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• For the S-Function, we use a 
polynomial:

y = -x3/2  + 3x/2

Dry Friction: S-Function

0.0 0.4 0.8

-1

0

1

Dymola student version, see www.Dymola.com

y

function S_Func

input Real x;

output Real y;

algorithm 

if x > 1 then

y := 1;

elseif x < -1 then

y := -1;

else

y := -0.5*x^3 + 1.5*x;

end if;

end S_Func;
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• For the S-Function, we use a 
polynomial:

y = -x3/2  + 3x/2

• Then, we provide inputs in order 
to scale the function to fit an 
arbitrary rectangle 

(x_min, y_min, x_max, y_max)

• The annotation tells Dymola that 
the function is differentiable 
once. So they are no 
discontinuities. 

• This is important for the ODE-
solver.

Dry Friction: S-Function

function S_Func "Models an S-Function“

input Real x_min;

input Real x_max;

input Real y_min;

input Real y_max;

input Real x;

output Real y;

protected 

Real x2;

algorithm 

x2 := x - x_max/2 - x_min/2;

x2 := x2*2/(x_max-x_min);

if x2 > 1 then

y := 1;

elseif x2 < -1 then

y := -1;

else

y := -0.5*x2^3 + 1.5*x2;

end if;

y := y*(y_max-y_min)/2;

y := y + y_max/2 + y_min/2;

annotation(smoothOrder=1);

end S_Func;
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• We may use the S-Function in 
order to compose the point-
symmetric Triple S-Function:

Dry Friction: Triple S-Function

function TripleS_Func

input Real x_max;

input Real x_sat;

input Real y_max;

input Real y_sat;

input Real x;

output Real y;

algorithm 

if x > x_max then

y := S_Func(x_max,x_sat,          

y_max,y_sat,x);

elseif x < -x_max then

y := S_Func(-x_max,-x_sat,

-y_max,-y_sat,x);

else

y := S_Func(-x_max,x_max,-

y_max,y_max,x);

end if;

annotation(smoothOrder=1);

end TripleS_Func;

x_satx_max

y_max

y_sat
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• Now we can model our own dry 
friction component:

Dry Friction Model

model DryFriction

extends Modelica.Mechanics.

Translational.Interfaces.

PartialCompliantWithRelativeStates;

import SI = Modelica.SIunits;

parameter SI.Force N 

"normal force";

parameter SI.Velocity vAdhesion 

"adhesion velocity";

parameter SI.Velocity vSlide 

"sliding velocity";

parameter Real mu_A 

"friction coefficient at adhesion";

parameter Real mu_S 

"friction coefficient at sliding";

equation 

f =  N*TripleS_Func(vAdhesion,vSlide,

mu_A,mu_S,v_rel);

end DryFriction;
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• Here is the application of our dry-friction component.

Counter spin and dry friction

inertia

J=0.01

idealRolling?
mass

m=0.1

dryFriction
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+Counter spin and dry friction
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• Rotational and translational mechanics can be treated the same way.

• The proper formulation of mechanical systems requires the formulation 
of holonomic constraints.

• In order to enable this, positions and not velocities form the potential 
connector variables.

• Consequently, the derivatives are redistributed within the components.

• We learnt about dry friction and regularization.

Summary



Questions ?
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