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Potential and Flow

mm + 4~

Robotics and Mechatronics Centre

For each physical domain, there is a specific pair of effort / flow variables

Translational Mechanics

Rotational Mechanics

Electrics

Magnetics

Hydraulics

Thermal

Chemical

Velocity: v [m/s]

Angular Velocity: w [1/s]

Voltage Potential v [V]

Magnetomotive Force:

O [A]

Pressure p [Pa]
Temperature T[K]

Chemical Potential: n
[J/mol]

Force: f [N]
Torque: T [Nm]

Current i [A]

Time-derivativc_e of
Magnetic Flux: @ [V]

Volume flow rate V [m3/s]
Entropy Flow Rate S [J/Ks]

Molar Flow Rate v [mol/s]
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Potential and Flow

mm + 4~
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For the mechanical domain, the first two are relevant:

Translational Mechanics

Rotational Mechanics

Electrics

Magnetics

Hydraulics

Thermal

Chemical

Velocity: v [m/s]

Angular Velocity: w [1/s]

Voltage Potential v [V]

Magnetomotive Force:

O [A]

Pressure p [Pa]
Temperature T[K]

Chemical Potential: u
[J/mol]

Force: f[N]
Torque: T [Nm]

Current i [A]

Time—derivativg: of
Magnetic Flux: @ [V]

Volume flow rate V [m3/s]
Entropy Flow Rate S [J/Ks]

Molar Flow Rate v [mol/s]
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Potential and Flow
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Each node was represented by a pair of variables
A potential variable

v (velocity for translational mechanics)

w (angular velocity for rotational mechanics)

and a flow variable
f (force for translational mechanics)

T (force for rotational mechanics)
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Potential and Flow mm - ‘#;Z

Robotics and Mechatronics Centre

For one connection between a set of n nodes, n equations have to be
generated.

n-1 equalities
Translational: v, =v, = .. = v,

Rotational: w; =w, = ... = w,
1 balance equation

Translational: f; +f, + ... +f =0

Rotational: t; + T, +..+1,=0
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Holonomic Constraints Tt - ‘#m
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But the Modelica Standard Library supports different potential variables.

Not the velocity v but the position s

 Not the angular velocity w but the angle ¢

connector Flange a connector Flange a
SI.Position s; SI.Angle phi;
flow SI.Force £ flow SI.Torque tau;
end Flange a; end Flange a;

e« Why is this? Is our table incorrect?
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Holonomic Constraints Tt - ‘#m
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 No, the table is correct but the correct formulation of mechanical system
adds another requirement:

The formulation of holonomic constraints!

« Holonomic Constraints are algebraic constraints on the level of position.

o Arigid rod describes a given distance between two flanges. Here two
positions are bound with one constraint equation.

e Inorder, to formulate such equations correctly, the position needs to be
part of the connector.
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Holonomic Constraints: Example  TUTI * #
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f1

e Let us model a simple system: 4%4

« Two masses connected to i %
springs.

« The position s, and s, are i

connected by the following
holonomic constraint:

constraint
— *
s =|s,]%s,
A
e Such non-linear constraints are \
rare in 1D systems but common
in multidimensional systems. S

f2
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Holonomic Constraints: Example
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The constraint on positional level:

s1= s,

implies for the velocity:

Power conservation states

or

v, =2]|s,| v,

v fi+ v, f,=0

f,-2]s,| +f,=0

f1

4%4
k-
|

constraint

%.
7777

f2
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Holonomic Constraints: Example  TUTI * #
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e Hereis ahandwritten Modelica-  model TwoSpringsWithConstraint

code for this example: Real sl1;

Real s2;

Real vl1;

Real v2;

« Thetwovariables s1 _int and Real £
s2 int are used to formulate parameter Real ml = 10;
the constraints. parameter Real mZ2 = 2;

Real sl int;
Real s2 int;

equation
e On the next slide you see the vl = der(sl);
simulation result (the positions of ~ V¢ = der(s2);
the t -1*sl + £ = ml*der(vl);
e two masses). ~20% (s2-5) - f*abs(s2 int)*2

= m2*der (v2) ;

sl = sl int;
s2 = 82 _int;
sl int = abs(s2 int) *s2Z2 int;

end TwoSpringsWithConstraint;
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Holonomic Constraints: Example  TUTI * #

Robotics and Mechatronics Centre

24

20

16

12

« With DASSL and a local error tolerance of 0.0001:

sl s2

I

10 20 30 40 50 60 70 80 90 100
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Holonomic Constraints: Example  TUTI * #
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35

304

AATATATATATATA

0 10 20 30 40 50 60 70 80 90 100

25
20
15

10

~ 10

o« With DASSL and a local error tolerance of 0.01...

sl s2

o ...the conservation of energy is violated by numerical integration.

© Dirk Zimmer, November 2022, Slide 12




Holonomic Constraints: Example  TUTI * #
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With DASSL and a local error tolerance of 0.01...

sl s2

0

10 20 30 40 50 60 70 80 90 100

However, the holonomic constraint does hold up.
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Holonomic Constraints: Example  TUTI * #
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But couldn’t we formulate the
same system, using just the
velocities v1 and v2 instead of
the positions s1 and s2?

We could formulate s1_int and

s2_int as integrals for vl and v2.

Here is why not:
(using DASSL with tolerance
0.01):

model TwoSpringsWithConstraint
Real sl1;
Real s2;
Real vl1;
Real v2;
Real f;
parameter Real ml = 10;
parameter Real m2 = 2;
Real sl int;
Real s2 int;
equation
vl = der(sl);
vZ2 = der(s2);
-1*sl + £ = ml*der(vl);
-20* (s2-5) - f*abs(s2 int)*2
= m2*der (v2) ;

vl = der (sl int);
v2 = der(sZ2 int);
sl int = abs(sZ2 int)*s2 int;

end TwoSpringsWithConstraint;
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Holonomic Constraints: Example  TUTI * #
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With DASSL and a local error tolerance of 0.01...

40

sl s2

35+
301
25
20
15

10

-10

ATRTATATATAVAN

0

10 20 30 40 50

... the error has gotten worse and...

60

70 80 90 100
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Holonomic Constraints: Example  TUTI * #
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With DASSL and a local error tolerance of 0.01...

sl s2

0 20 30 40 50
...the holonomic constraint is lost.

There is now a shift between the bodies.

60

70 80 90 100
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Holonomic Constraints: Example  TUTI * #
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« What has happened? Why does model TwoSpringsWithConstraint

the system behave differently? Real sl;
Real s2;
« Sinceslandsl intarenot Real vl;
algebraically coupled, they are Real vzj
separately integrated Neat it
P y & | parameter Real ml = 10;
. The same holds for s2 and s2_int. =~ Parameter Real mz = 2;

Real sl_int;

« Hence, the holonomic constraints Real s2_int;

. . . equation
becomes subject to an increasing ST ot
) ) ] vl = der(sl);
numerical integration error. 92 = der(e2) ¢
. . -1*sl + £ = ml*der(vl);
o This can drastically change the _00% (s2-5) - f*abs(s2 int)*2
systems behavior. = m2*der (v2) ; a
vl = der (sl int);
v2 = der(sZ2 int);
sl int = abs(sZ2 int)*s2 int;

end TwoSpringsWithConstraint;
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Holonomic Constraints: Example  TUTI * #

Robotics and Mechatronics Centre

« What has happened? Why does model TwoSpringsWithConstraint

the system behave differently? Real sl;
Real s2;
« Sinceslandsl intarenot Real vl;
algebraically coupled, they are Real vzj
separately integrated Neat it
P y & | parameter Real ml = 10;
. The same holds for s2 and s2_int. =~ Parameter Real mz = 2;

Real sl int;
« Hence, the holonomic constraints Real s2_int;

. . . equation
becomes subject to an increasing ST ot
) ) ] vl = der(sl);
numerical integration error. 92 = der(e2) ¢
. . -1*sl + £ = ml*der(vl);
o This can drastically change the _00% (s2-5) - f*abs(s2 int)*2
systems behavior. = m2*der (v2) ; a
e« So..DON'T! = or Al
= der (S2~Qt) ;
sl int = abs(sZ2 int)*s2 int;

end TwoSpringsWithConstraint;
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Holonomic Constraints
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For our mechanical components, this means that
positions as potential variables:

Each node was represented by a pair of variables
A potential variable
s (position for translational mechanics)

¢ (angle for rotational mechanics)

and a flow variable
f (force for translational mechanics)

T (force for rotational mechanics)

we have to use
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Potential and Flow mm - ‘#;Z
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« We see that the new potential equations imply the old ones:

e n-1equalities
Translational: s; =s,=...=s_impliesv, =v,=..=v,

Rotational: o, =@, =..=¢ ,impliesw; = w, = ... = w,
« 1 balance equation
Translational: f; +f, + ... +f =0

Rotational: t; + T, +..+1,=0

The information about the energy flow is still contained in our connector
variables!
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Dampers m - ‘#;?R
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Now we can model the components: The dampers

- ® - o

Av-D=f Aw-D=t

Av = d(s,-s,)/dt Aw = d(p,- ¢,)/dt
f=5 =T,

0=+, 0=1T,+1,
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Dampers m - ‘#;?R

Robotics and Mechatronics Centre

Now we can model the components: The dampers

- ® - o

Av-D=f This is totally fine Aw-D=T1

Av = d(s,-s,)/dt Aw = der(¢p,- ,) /dt
f=5 =1,

0=f+, O=1,+1,

The derivatives are computed
symbolically not numerically
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Springs m - ‘#;?R
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The springs: Since the new formulation is based on the positions, the model
does not own a derivative anymore.

= VAVASS

As-C=f Ap-C=t1

As = (s,-5,) - SO Ap = (@ ;- ¢1) - @,
f=15 =1,

0 =f,+f, O=t,+T1,
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Mass and Inertia Tt - ‘#m
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Whereas the spring components have lost their integrator, the mass and
inertia have gained one:

| . |
L1 =

f =M -dv/dt T =1 -dw/dt
v =ds,/dt w =de ,/dt
S;=S, Po= P
=4 T=0+T
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Transformers T - ‘#m
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The transformer is represented by a gearbox. Its equation has hardly
changed.

¢, = Ratio - ¢,

T, = Ratio - T,
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Transformers T - ‘#m
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An ideal rolling wheel represents a transformation between translational
and rotational movement.

-

Ideal rolling means that the velocity of the virtual contact point is zero. The
virtual contact point is located on the wheel.

Radius - =5
T=Radius - f
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Ball with counter spin nm - %~
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e Finally, let us model a simple mechanical system.

« Aballis placed on a table and propelled forwards with reverse spin.
Eventually the spin will decelerate the ball and force him to roll
backwards.

e Here s a first model of such a system.

nertia idealRolling? damper
Mass
1 —
[ l’ m=0.1
J=0.01 >
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Ball with counter spin
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— Mmass.Ss

0.25

0.20+

0.154

0.10+

0.05+

0.00+

-0.05+

-0.10+

'015 T T T T T T T T T T
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Dry Friction m - ‘#;?R
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« The damper generates a friction force that is proportional to the
difference in velocity.

Av

« The damper is not a good friction model. It is too “smooth”.

o Instead we want to use a dry friction model instead.
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Dry Friction m - ‘#;?R
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o The characteristic curve for dry friction is a multi-valued function and
hence very tricky.

Av

« The adhesive friction (“stiction”) is stronger than dry friction while
sliding. The friction force always counteracts the movement.

« Hence, the curve contains discontinuities and represents infinite
stiffness.

o The curve can also not be properly described by a mathematical
function.
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Dry Friction m - ‘#;?R
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« Hence, the dry friction model of Modelica is pretty complicated and
contains many language elements we do not know yet.

f

Av

e Since we cannot cope with these discontinuities yet, we try to avoid
them.

« We do so be regularizing the characteristic curve.
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Dry Friction: Regularization nm - 4%
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e To this end, we “stretch” the curve and transform it into a piecewise
linear function.

Av

o The cost of this approach is: loss of precision and/or artificial stiffness.
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Dry Friction: Regularization nm - 4%
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« Instead of generating a piecewise linear function, we can also compose
the function using three S-functions and two constant functions.

« The result is a nicely differentiable function.
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Dry Friction: Regularization
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Instead of generating a piecewise linear function, we can also compose

the function using three S-functions.

The result is a nicely differentiable function.
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Dry Friction: S-Function nm - 4%
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e For the S-Function, we use a function S Func
polynomial: B
input Real x;
output Real vy;

y=-x3/2 +3x/2

y algorithm

17 if x > 1 then
i y = 1;
elseif x < -1 then
y := -1;
4 else
y = —-0.5*x"3 + 1.5*x;
end if;

0.0 0.4 0.8

end S Func;
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Dry Friction: S-Function nm - 4%
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« Forthe S-—Functlon, WE use a function S Func "Models an S-Function™
polynomial: input Real x min;
input Real x max;
input Real y min;
_ input Real y max;
y--x3/2 +3x/2 input Real x;
output Real vy;

protected
« Then, we provide inputs in order Real x2;
to scale the function to fit an _
. algorithm
arbitrary rectangle S man/s - % min/as
(x_min, y_min, x_max, y_max) ii 5 iZIzt/:r(lZHmaX_X_mm) ;
y = 1;
elseif x2 < -1 then
« The annotation tells Dymola that y = -1;
the function is differentiable else
once. So they are no y 1= -0.5*x273 + 1.5%x2;
. . ... end if;
discontinuities. oy maey min) /2;
o Thisis important for the ODE- y =y + y max/2 + y min/2;

annotation (smoothOrder=1) ;

solver. end S Func;
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Dry Friction: Triple S-Function nm - 4%
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« We may use the S-Function in
order to compose the point-

symmetric Triple S-Function: input Real x max;
input Real x sat;
input Real y max;
input Real y sat;

X_sat
X—fnaxl l - input Real x;

output Real vy;

function TripleS Func

y_maX ——
] algorithm

y_sat if x > x max then
y := S Func(x max,x sat,
7 y max,y sat,x);
elseif x < -x max then
y := S Func(-x max,-x sat,
] -y max,-y sat,x);

else
| | y := S Func(-x max, X max, -
y max,y max,Xx);
end if;

annotation (smoothOrder=1) ;
end TripleS Func;
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Dry Friction Model nm - 4%
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« Now we can model ourowndry  podel pryFriction

friction component: extends Modelica.Mechanics.

Translational.Interfaces.
PartialCompliantWithRelativeStates;

import SI = Modelica.SIunits;

parameter SI.Force N

"normal force";

parameter SI.Velocity vAdhesion
"adhesion velocity";

F parameter SI.Velocity vSlide

"sliding velocity";

parameter Real mu A

"friction coefficient at adhesion";
parameter Real mu S

"friction coefficient at sliding";

equation
f = N*TripleS Func(vAdhesion,vSlide,
mu A,mu S,v_rel);

end DryFriction;
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Counter spin and dry friction nm - 4%
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« Hereis the application of our dry-friction component.

idealRolling?

inertia dryFriction mass
| —
] mr m=0.1
J=0.01 -

© Dirk Zimmer, November 2022, Slide 39




Counter spin and dry friction
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—— mass.s
0.40

0.35+

0.30

0.25+

0.20+

0.15+

0.10+

0.05+

0.00

-0.05+

-010 T I T I T I

4 5
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Summary m + ‘#;?R
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« Rotational and translational mechanics can be treated the same way.

e The proper formulation of mechanical systems requires the formulation
of holonomic constraints.

e In order to enable this, positions and not velocities form the potential
connector variables.

o Consequently, the derivatives are redistributed within the components.

« We learnt about dry friction and regularization.
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Questions ?
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