Toward Safe Endonasal Surgery Using Teleoperated Continuum Robots

Dr. Jessica Burgner

IROS 2011, Workshop on Methods for Safer Surgical Robotics Procedures
Toward Safe Endonasal Surgery Using Teleoperated Continuum Robots

Bob Webster, PhD, PI
Jessica Burgner, PhD
Caleb Rucker, PhD
Phil Swaney
Hunter Gilbert

Paul Russel, MD
Kyle Weaver, MD

Dr. J. Burgner, 9/30/11
Otolaryngology & Neurological surgery
Skull Base Surgery

- 1 of 5* people develop a pituitary tumor
- 39% of all brain tumors are at tuberculum sellae

* American Brain Tumor Association
The Endonasal Approach

tuberculum sellae meningioma

pituitary gland
sphenoid sinus
nasal cavity
Endonasal Surgery - Video
Challenges

- Only 14.5% of skull base surgeries are performed endonasally
 - Limited dexterity of current instrumentation
 - Small number of expert surgeons
 - Visualization

- Attempts to use the daVinci

Hanna et al.
Concentric Tube Robots
How We Address Safety

- Compliant, dexterous robot
- Modular actuation unit for custom designed active cannula robot
- Teleoperation
- Force sensing
- Image-guidance
- Virtual Fixtures
Robot Design - Workspace
Design Parameters

- Number of tubes
- Tube lengths
- Tube curves
- Overall robot stiffness
 - Tube diameters
 - Tube wall thicknesses
 - Tube configuration
Optimize Tube Parameters

- 3 tube design
 - Outer tube straight
 - Fixed length (100mm)
 - Middle and inner tube
 - Initial straight length
 - Curved part with constant curvature
- Optimize for maximum workspace coverage at region of interest
Teleoperated System
The Robot
Cadaver Setup Trial
How We Address Safety

- Compliant, dexterous robot
- Modular actuation unit for custom designed active cannula robot
- **Teleoperation**
- Force sensing
- Image-guidance
- Virtual Fixtures
Mechanics-Based Model

INPUTS:
Actuators q
Loads w

Model: Nonlinear BVP

OUTPUTS:
Robot Shape $g(s)$

s: Arc Length Along Robot
$g(s)$: Frame Along Robot
q: Translations and Rotations of Component Tubes
V: End Effector Motion
w: Applied Wrench

Dr. J. Burgner, 9/30/11
Toward Safe Endonasal Surgery Using Teleoperated Continuum Robots
Jacobian and Compliance Matrix

\[V = J(s, q, w) \dot{q} + C(s, q, w) \dot{w} \]

Damped Least Squares Control

Objective Function

\[
F = \frac{1}{2} \left((J\dot{q} - v_0)^T W_0 (J\dot{q} - v_0) + \sum_{i=1}^{m} (\dot{q} - v_i)^T W_i (\dot{q} - v_i) \right)
\]

Weighted Tracking Accuracy
Damping & Avoiding

Minimize \(F \)

\[
\dot{q} = \left(J W_0 J^T + \sum_{i=1}^{m} W_i \right)^{-1} \left(J^T W_0 v_0 + \sum_{i=1}^{n} W_i v_i \right)
\]
Teleoperation Control

Damped Least Squares Control

PID Control

Kinematic Model

Surgeon’s Hand

Robot Tip

g_d, q, F, L, g_m, J
Teleoperation
How We Address Safety

- Compliant, dexterous robot
- Modular actuation unit for custom designed active cannula robot
- Teleoperation
- Force sensing
- Image-guidance
- Virtual Fixtures
Intrinsic Force Sensing

- Deflection based wrench estimation

\[w_{e}^{k+1} \approx w_{e}^{k} + C^{-1} \left(g_{p}^{-1} g_{s} - I \right)^{\top} \]
Extended Kalman Filter Approach

- g_s is subject to measurement inaccuracy

$$\mathbf{w}_{e}^{k+1} = \mathbf{w}_{e}^{k} + K \left(g_p^{-1} g_s - I \right)^{\top}$$

$$\Sigma^{k+1} = (I - KC)\Sigma^{k}_p$$

$$K = \Sigma_p C^T (C\Sigma_p C^T + \Sigma_s)^{-1}$$

Deflection based Force Sensing
Increase Safety

- Approached from the medical application
 - Current limitations
 - Lack of instrumentation

- Robotic design
- Ergonomics
- New camera views
- Improved image-guidance, virtual fixtures
Safe Robot – New Procedures

- „Turn corners“
- Dexterity in cranial area

- Potential applications
 - Fetal surgery
 - Lung surgery
 - Middle ear
 - Cardiac surgery
Conclusion

- Approach safety from the robot design perspective
- Consider safety in every development step
Intuitive Surgical Research Grant
NIH Grant # R21 EB011628
NIH Grant # R44 CA134169
NSF CAREER Award # IIS-1054331

http://research.vuse.vanderbilt.edu/MEDLab/